Feat: WebSocket 인스턴스 생성
This commit is contained in:
parent
4fc13fa60c
commit
fea960cc0d
@ -1,141 +1,208 @@
|
||||
import json
|
||||
|
||||
from fastapi import APIRouter, HTTPException
|
||||
from schemas.predict_request import PredictRequest
|
||||
from schemas.train_request import TrainRequest
|
||||
from schemas.predict_response import PredictResponse, LabelData
|
||||
from services.ai_service import load_detection_model
|
||||
from utils.dataset_utils import split_data
|
||||
from utils.file_utils import get_dataset_root_path, process_directories, process_image_and_label, join_path
|
||||
from typing import List
|
||||
from fastapi.responses import FileResponse
|
||||
from handler.websocket_handler import WebSocketClient
|
||||
from utils.websocket_utils import WebSocketClient
|
||||
import asyncio
|
||||
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post("/detection", response_model=List[PredictResponse])
|
||||
def predict(request: PredictRequest):
|
||||
async def predict(request: PredictRequest):
|
||||
version = "0.1.0"
|
||||
print("여기")
|
||||
|
||||
# 모델 로드
|
||||
try:
|
||||
model = load_detection_model()
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="load model exception: "+str(e))
|
||||
|
||||
# 추론
|
||||
results = []
|
||||
try:
|
||||
for image in request.image_list:
|
||||
# URL에서 이미지를 메모리로 로드 TODO: 추후 메모리에 할지 어떻게 해야할지 or 병렬 처리 고민
|
||||
# response = requests.get(image.image_url)
|
||||
|
||||
# 이미지 데이터를 메모리로 로드
|
||||
# img = Image.open(io.BytesIO(response.content))
|
||||
|
||||
predict_results = model.predict(
|
||||
source=image.image_url,
|
||||
iou=request.iou_threshold,
|
||||
conf=request.conf_threshold,
|
||||
classes=request.classes
|
||||
)
|
||||
results.append(predict_results[0])
|
||||
|
||||
# 메모리에서 이미지 객체 해제
|
||||
# img.close()
|
||||
# del img
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="model predict exception: "+str(e))
|
||||
|
||||
# 추론 결과 -> 레이블 객체 파싱
|
||||
response = []
|
||||
try:
|
||||
for (image, result) in zip(request.image_list, results):
|
||||
label_data:LabelData = {
|
||||
"version": version,
|
||||
"task_type": "det",
|
||||
"shapes": [
|
||||
{
|
||||
"label": summary['name'],
|
||||
"color": "#ff0000",
|
||||
"points": [
|
||||
[summary['box']['x1'], summary['box']['y1']],
|
||||
[summary['box']['x2'], summary['box']['y2']]
|
||||
],
|
||||
"group_id": summary['class'],
|
||||
"shape_type": "rectangle",
|
||||
"flags": {}
|
||||
}
|
||||
for summary in result.summary()
|
||||
],
|
||||
"split": "none",
|
||||
"imageHeight": result.orig_img.shape[0],
|
||||
"imageWidth": result.orig_img.shape[1],
|
||||
"imageDepth": result.orig_img.shape[2]
|
||||
}
|
||||
response.append({
|
||||
"image_id":image.image_id,
|
||||
"image_url":image.image_url,
|
||||
"data":label_data
|
||||
})
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="label parsing exception: "+str(e))
|
||||
return response
|
||||
|
||||
|
||||
@router.post("/detection/train")
|
||||
async def train(request: TrainRequest):
|
||||
# Spring 서버의 WebSocket URL
|
||||
# spring_server_ws_url = f"ws://localhost:8080/ws/ai/train/progress/{request.project_id}"
|
||||
# TODO: 배포 시 변경
|
||||
spring_server_ws_url = f"ws://localhost:8080/ws"
|
||||
|
||||
print("여기")
|
||||
# WebSocketClient 인스턴스 생성
|
||||
print("연결 요청 - " + spring_server_ws_url)
|
||||
ws_client = WebSocketClient(spring_server_ws_url)
|
||||
|
||||
try:
|
||||
await ws_client.connect()
|
||||
|
||||
await ws_client.send_message("/app/ai/train/progress", f"Training started for project {request.project_id}")
|
||||
# 모델 로드
|
||||
try:
|
||||
model = load_detection_model()
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="load model exception: " + str(e))
|
||||
|
||||
for i in range(1, 31):
|
||||
await ws_client.send_message("/app/ai/train/progress", f"Training progress: {i}/30")
|
||||
await asyncio.sleep(1)
|
||||
# 추론
|
||||
results = []
|
||||
total_images = len(request.image_list)
|
||||
for idx, image in enumerate(request.image_list):
|
||||
try:
|
||||
# URL에서 이미지를 메모리로 로드 TODO: 추후 메모리에 할지 어떻게 해야할지 or 병렬 처리 고민
|
||||
|
||||
await ws_client.send_message("/app/ai/train/progress", "Training complete")
|
||||
predict_results = model.predict(
|
||||
source=image.image_url,
|
||||
iou=request.iou_threshold,
|
||||
conf=request.conf_threshold,
|
||||
classes=request.classes
|
||||
)
|
||||
# 예측 결과 처리
|
||||
result = predict_results[0]
|
||||
label_data = LabelData(
|
||||
version=version,
|
||||
task_type="det",
|
||||
shapes=[
|
||||
{
|
||||
"label": summary['name'],
|
||||
"color": "#ff0000",
|
||||
"points": [
|
||||
[summary['box']['x1'], summary['box']['y1']],
|
||||
[summary['box']['x2'], summary['box']['y2']]
|
||||
],
|
||||
"group_id": summary['class'],
|
||||
"shape_type": "rectangle",
|
||||
"flags": {}
|
||||
}
|
||||
for summary in result.summary()
|
||||
],
|
||||
split="none",
|
||||
imageHeight=result.orig_img.shape[0],
|
||||
imageWidth=result.orig_img.shape[1],
|
||||
imageDepth=result.orig_img.shape[2]
|
||||
)
|
||||
|
||||
response_item = PredictResponse(
|
||||
image_id=image.image_id,
|
||||
image_url=image.image_url,
|
||||
data=label_data
|
||||
)
|
||||
|
||||
# 진행률 계산
|
||||
progress = (idx + 1) / total_images * 100
|
||||
|
||||
# 웹소켓으로 예측 결과와 진행률 전송
|
||||
message = {
|
||||
"project_id": request.project_id,
|
||||
"progress": progress,
|
||||
"result": response_item.dict()
|
||||
}
|
||||
|
||||
await ws_client.send_message("/app/ai/predict/progress", json.dumps(message))
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
|
||||
|
||||
# 추론 결과 -> 레이블 객체 파싱
|
||||
response = []
|
||||
try:
|
||||
for (image, result) in zip(request.image_list, results):
|
||||
label_data: LabelData = {
|
||||
"version": version,
|
||||
"task_type": "det",
|
||||
"shapes": [
|
||||
{
|
||||
"label": summary['name'],
|
||||
"color": "#ff0000",
|
||||
"points": [
|
||||
[summary['box']['x1'], summary['box']['y1']],
|
||||
[summary['box']['x2'], summary['box']['y2']]
|
||||
],
|
||||
"group_id": summary['class'],
|
||||
"shape_type": "rectangle",
|
||||
"flags": {}
|
||||
}
|
||||
for summary in result.summary()
|
||||
],
|
||||
"split": "none",
|
||||
"imageHeight": result.orig_img.shape[0],
|
||||
"imageWidth": result.orig_img.shape[1],
|
||||
"imageDepth": result.orig_img.shape[2]
|
||||
}
|
||||
response.append({
|
||||
"image_id": image.image_id,
|
||||
"image_url": image.image_url,
|
||||
"data": label_data
|
||||
})
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="label parsing exception: " + str(e))
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
print(f"Prediction process failed: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail="Prediction process failed")
|
||||
|
||||
finally:
|
||||
if ws_client.is_connected():
|
||||
await ws_client.close()
|
||||
|
||||
|
||||
@router.post("/detection/train")
|
||||
async def train(request: TrainRequest):
|
||||
# 데이터셋 루트 경로 얻기
|
||||
dataset_root_path = get_dataset_root_path(request.project_id)
|
||||
|
||||
# 디렉토리 생성 및 초기화
|
||||
process_directories(dataset_root_path)
|
||||
|
||||
# 학습 데이터 분류
|
||||
train_data, val_data = split_data(request.data, request.ratio, request.seed)
|
||||
|
||||
# Spring 서버의 WebSocket URL
|
||||
# TODO: 배포시에 변경
|
||||
spring_server_ws_url = f"ws://localhost:8080/ws"
|
||||
|
||||
# WebSocketClient 인스턴스 생성
|
||||
ws_client = WebSocketClient(spring_server_ws_url)
|
||||
|
||||
|
||||
try:
|
||||
await ws_client.connect()
|
||||
|
||||
# 학습 데이터 처리
|
||||
total_data = len(train_data)
|
||||
for idx, data in enumerate(train_data):
|
||||
# TODO: 비동기면 await 연결
|
||||
# process_image_and_label(data, dataset_root_path, "train")
|
||||
|
||||
# 진행률 계산
|
||||
progress = (idx + 1) / total_data * 100
|
||||
|
||||
await ws_client.send_message("/app/ai/train/progress", f"학습 데이터 처리 중 {request.project_id}: {progress:.2f}% 완료")
|
||||
|
||||
# 검증 데이터 처리
|
||||
total_val_data = len(val_data)
|
||||
for idx, data in enumerate(val_data):
|
||||
# TODO: 비동기면 await 연결
|
||||
# process_image_and_label(data, dataset_root_path, "val")
|
||||
|
||||
# 진행률 계산
|
||||
progress = (idx + 1) / total_val_data * 100
|
||||
# 웹소켓으로 메시지 전송 (필요할 경우 추가)
|
||||
await ws_client.send_message("/app/ai/val/progress", f"검증 데이터 처리 중 {request.project_id}: {progress:.2f}% 완료")
|
||||
|
||||
model = load_detection_model("test-data/model/best.pt")
|
||||
model.train(
|
||||
data=join_path(dataset_root_path, "dataset.yaml"),
|
||||
name=join_path(dataset_root_path, "result"),
|
||||
epochs=request.epochs,
|
||||
batch=request.batch,
|
||||
)
|
||||
|
||||
# return FileResponse(path=join_path(dataset_root_path, "result", "weights", "best.pt"), filename="best.pt", media_type="application/octet-stream")
|
||||
|
||||
return {"status": "Training completed successfully"}
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Training process failed: {str(e)}")
|
||||
print(f"Training process failed: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail="Training process failed")
|
||||
|
||||
finally:
|
||||
await ws_client.close()
|
||||
if ws_client.is_connected():
|
||||
await ws_client.close()
|
||||
|
||||
|
||||
# # 데이터셋 루트 경로 얻기
|
||||
# dataset_root_path = get_dataset_root_path(request.project_id)
|
||||
|
||||
# # 디렉토리 생성 및 초기화
|
||||
# process_directories(dataset_root_path)
|
||||
|
||||
# # 학습 데이터 분류
|
||||
# train_data, val_data = split_data(request.data, request.ratio, request.seed)
|
||||
|
||||
# # 학습 데이터 처리
|
||||
# for data in train_data:
|
||||
# process_image_and_label(data, dataset_root_path, "train")
|
||||
|
||||
# # 검증 데이터 처리
|
||||
# for data in val_data:
|
||||
# process_image_and_label(data, dataset_root_path, "val")
|
||||
|
||||
# model = load_detection_model("test-data/model/best.pt")
|
||||
|
||||
# model.train(
|
||||
# data=join_path(dataset_root_path,"dataset.yaml"),
|
||||
# name=join_path(dataset_root_path,"result"),
|
||||
# epochs= request.epochs,
|
||||
# batch=request.batch,
|
||||
# )
|
||||
|
||||
# return FileResponse(path=join_path(dataset_root_path, "result", "weights", "best.pt"), filename="best.pt", media_type="application/octet-stream")
|
@ -6,7 +6,7 @@ from ultralytics.nn.tasks import DetectionModel, SegmentationModel
|
||||
import os
|
||||
import torch
|
||||
|
||||
def load_detection_model(model_path: str = os.path.join("test-data","model","initial.pt"), device:str ="auto"):
|
||||
def load_detection_model(model_path: str = os.path.join("test-data","model","yolov8n.pt"), device:str ="auto"):
|
||||
"""
|
||||
지정된 경로에서 YOLO 모델을 로드합니다.
|
||||
|
||||
@ -18,7 +18,7 @@ def load_detection_model(model_path: str = os.path.join("test-data","model","ini
|
||||
Returns:
|
||||
YOLO: 로드된 YOLO 모델 인스턴스
|
||||
"""
|
||||
|
||||
|
||||
if not os.path.exists(model_path) and model_path != "test-data/model/yolov8n.pt":
|
||||
raise FileNotFoundError(f"Model file not found at path: {model_path}")
|
||||
|
||||
@ -26,7 +26,7 @@ def load_detection_model(model_path: str = os.path.join("test-data","model","ini
|
||||
# Detection 모델인지 검증
|
||||
if not (isinstance(model, YOLO_Model) and isinstance(model.model, DetectionModel)):
|
||||
raise TypeError(f"Invalid model type: {type(model)} (contained model type: {type(model.model)}). Expected a DetectionModel.")
|
||||
|
||||
|
||||
# gpu 이용
|
||||
if (device == "auto" and torch.cuda.is_available()):
|
||||
model.to("cuda")
|
||||
|
@ -1,6 +1,4 @@
|
||||
import asyncio
|
||||
import websockets
|
||||
import logging
|
||||
|
||||
class WebSocketClient:
|
||||
def __init__(self, url: str):
|
||||
@ -32,4 +30,7 @@ class WebSocketClient:
|
||||
await self.websocket.close()
|
||||
print("WebSocket connection closed.")
|
||||
except Exception as e:
|
||||
print(f"Failed to close WebSocket connection: {str(e)}")
|
||||
print(f"Failed to close WebSocket connection: {str(e)}")
|
||||
|
||||
def is_connected(self):
|
||||
return self.websocket is not None and self.websocket.open
|
Loading…
Reference in New Issue
Block a user