Feat: Fast API 소켓 열기
This commit is contained in:
parent
dbab504ab8
commit
4fc13fa60c
@ -7,6 +7,8 @@ from utils.dataset_utils import split_data
|
||||
from utils.file_utils import get_dataset_root_path, process_directories, process_image_and_label, join_path
|
||||
from typing import List
|
||||
from fastapi.responses import FileResponse
|
||||
from handler.websocket_handler import WebSocketClient
|
||||
import asyncio
|
||||
|
||||
router = APIRouter()
|
||||
@router.post("/detection", response_model=List[PredictResponse])
|
||||
@ -80,31 +82,60 @@ def predict(request: PredictRequest):
|
||||
|
||||
|
||||
@router.post("/detection/train")
|
||||
def train(request: TrainRequest):
|
||||
# 데이터셋 루트 경로 얻기
|
||||
dataset_root_path = get_dataset_root_path(request.project_id)
|
||||
async def train(request: TrainRequest):
|
||||
# Spring 서버의 WebSocket URL
|
||||
# spring_server_ws_url = f"ws://localhost:8080/ws/ai/train/progress/{request.project_id}"
|
||||
spring_server_ws_url = f"ws://localhost:8080/ws"
|
||||
|
||||
# 디렉토리 생성 및 초기화
|
||||
process_directories(dataset_root_path)
|
||||
|
||||
# 학습 데이터 분류
|
||||
train_data, val_data = split_data(request.data, request.ratio, request.seed)
|
||||
|
||||
# 학습 데이터 처리
|
||||
for data in train_data:
|
||||
process_image_and_label(data, dataset_root_path, "train")
|
||||
# WebSocketClient 인스턴스 생성
|
||||
print("연결 요청 - " + spring_server_ws_url)
|
||||
ws_client = WebSocketClient(spring_server_ws_url)
|
||||
|
||||
# 검증 데이터 처리
|
||||
for data in val_data:
|
||||
process_image_and_label(data, dataset_root_path, "val")
|
||||
try:
|
||||
await ws_client.connect()
|
||||
|
||||
model = load_detection_model("test-data/model/best.pt")
|
||||
await ws_client.send_message("/app/ai/train/progress", f"Training started for project {request.project_id}")
|
||||
|
||||
model.train(
|
||||
data=join_path(dataset_root_path,"dataset.yaml"),
|
||||
name=join_path(dataset_root_path,"result"),
|
||||
epochs= request.epochs,
|
||||
batch=request.batch,
|
||||
)
|
||||
for i in range(1, 31):
|
||||
await ws_client.send_message("/app/ai/train/progress", f"Training progress: {i}/30")
|
||||
await asyncio.sleep(1)
|
||||
|
||||
await ws_client.send_message("/app/ai/train/progress", "Training complete")
|
||||
|
||||
return {"status": "Training completed successfully"}
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Training process failed: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail="Training process failed")
|
||||
|
||||
finally:
|
||||
await ws_client.close()
|
||||
|
||||
return FileResponse(path=join_path(dataset_root_path, "result", "weights", "best.pt"), filename="best.pt", media_type="application/octet-stream")
|
||||
|
||||
# # 데이터셋 루트 경로 얻기
|
||||
# dataset_root_path = get_dataset_root_path(request.project_id)
|
||||
|
||||
# # 디렉토리 생성 및 초기화
|
||||
# process_directories(dataset_root_path)
|
||||
|
||||
# # 학습 데이터 분류
|
||||
# train_data, val_data = split_data(request.data, request.ratio, request.seed)
|
||||
|
||||
# # 학습 데이터 처리
|
||||
# for data in train_data:
|
||||
# process_image_and_label(data, dataset_root_path, "train")
|
||||
|
||||
# # 검증 데이터 처리
|
||||
# for data in val_data:
|
||||
# process_image_and_label(data, dataset_root_path, "val")
|
||||
|
||||
# model = load_detection_model("test-data/model/best.pt")
|
||||
|
||||
# model.train(
|
||||
# data=join_path(dataset_root_path,"dataset.yaml"),
|
||||
# name=join_path(dataset_root_path,"result"),
|
||||
# epochs= request.epochs,
|
||||
# batch=request.batch,
|
||||
# )
|
||||
|
||||
# return FileResponse(path=join_path(dataset_root_path, "result", "weights", "best.pt"), filename="best.pt", media_type="application/octet-stream")
|
0
ai/app/handler/__init__.py
Normal file
0
ai/app/handler/__init__.py
Normal file
35
ai/app/handler/websocket_handler.py
Normal file
35
ai/app/handler/websocket_handler.py
Normal file
@ -0,0 +1,35 @@
|
||||
import asyncio
|
||||
import websockets
|
||||
import logging
|
||||
|
||||
class WebSocketClient:
|
||||
def __init__(self, url: str):
|
||||
self.url = url
|
||||
self.websocket = None
|
||||
|
||||
async def connect(self):
|
||||
try:
|
||||
self.websocket = await websockets.connect(self.url)
|
||||
print(f"Connected to WebSocket at {self.url}")
|
||||
except Exception as e:
|
||||
print(f"Failed to connect to WebSocket: {str(e)}")
|
||||
|
||||
async def send_message(self, destination: str, message: str):
|
||||
try:
|
||||
if self.websocket is not None:
|
||||
# STOMP 형식의 메시지를 전송
|
||||
await self.websocket.send(f"SEND\ndestination:{destination}\n\n{message}\u0000")
|
||||
print(f"Sent message to {destination}: {message}")
|
||||
else:
|
||||
print("WebSocket is not connected. Unable to send message.")
|
||||
except Exception as e:
|
||||
print(f"Failed to send message: {str(e)}")
|
||||
return
|
||||
|
||||
async def close(self):
|
||||
try:
|
||||
if self.websocket is not None:
|
||||
await self.websocket.close()
|
||||
print("WebSocket connection closed.")
|
||||
except Exception as e:
|
||||
print(f"Failed to close WebSocket connection: {str(e)}")
|
@ -16,4 +16,5 @@ dependencies:
|
||||
- dill
|
||||
- boto3
|
||||
- python-dotenv
|
||||
- locust
|
||||
- locust
|
||||
- websockets
|
||||
|
Loading…
Reference in New Issue
Block a user