Feat: 오토레이블링, 학습 비동기 처리

This commit is contained in:
김진현 2024-09-27 19:03:18 +09:00
parent 7016d3a91e
commit 7dd09182b8
3 changed files with 21 additions and 14 deletions

View File

@ -1,4 +1,5 @@
from fastapi import APIRouter, HTTPException
from fastapi.concurrency import run_in_threadpool
from api.yolo.detection import run_predictions, get_random_color, split_data
from schemas.predict_request import PredictRequest
from schemas.train_request import TrainRequest, TrainDataInfo
@ -25,7 +26,7 @@ async def classification_predict(request: PredictRequest):
url_list = list(map(lambda x:x.image_url, request.image_list))
# 추론
results = run_predictions(model, url_list, request, classes=[]) # classification은 classes를 무시함
results = await run_predictions(model, url_list, request, classes=[]) # classification은 classes를 무시함
# 추론 결과 변환
response = [process_prediction_result(result, image, request.label_map) for result, image in zip(results,request.image_list)]
@ -104,7 +105,7 @@ async def classification_train(request: TrainRequest):
download_data(train_data, test_data, dataset_root_path)
# 학습
results = run_train(request, model,dataset_root_path)
results = await run_train(request, model,dataset_root_path)
# best 모델 저장
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
@ -136,7 +137,7 @@ def download_data(train_data:list[TrainDataInfo], test_data:list[TrainDataInfo],
raise HTTPException(status_code=500, detail="exception in download_data(): " + str(e))
def run_train(request, model, dataset_root_path):
async def run_train(request, model, dataset_root_path):
try:
# 데이터 전송 콜백함수
def send_data(trainer):
@ -171,7 +172,7 @@ def run_train(request, model, dataset_root_path):
model.add_callback("on_train_epoch_start", send_data)
# 학습 실행
results = model.train(
results = await run_in_threadpool(model.train,
data=dataset_root_path,
name=join_path(dataset_root_path, "result"),
epochs=request.epochs,

View File

@ -1,4 +1,5 @@
from fastapi import APIRouter, HTTPException
from fastapi.concurrency import run_in_threadpool
from schemas.predict_request import PredictRequest
from schemas.train_request import TrainRequest, TrainDataInfo
from schemas.predict_response import PredictResponse, LabelData, Shape
@ -29,7 +30,7 @@ async def detection_predict(request: PredictRequest):
classes = get_classes(request.label_map, model.names)
# 추론
results = run_predictions(model, url_list, request, classes)
results = await run_predictions(model, url_list, request, classes)
# 추론 결과 변환
response = [process_prediction_result(result, image, request.label_map) for result, image in zip(results,request.image_list)]
@ -51,14 +52,16 @@ def get_classes(label_map:dict[str: int], model_names: dict[int, str]):
raise HTTPException(status_code=500, detail="exception in get_classes(): " + str(e))
# 추론 실행 함수
def run_predictions(model, image, request, classes):
async def run_predictions(model, image, request, classes):
try:
return model.predict(
result = await run_in_threadpool(
model.predict,
source=image,
iou=request.iou_threshold,
conf=request.conf_threshold,
classes=classes
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="exception in run_predictions: " + str(e))
@ -126,12 +129,13 @@ async def detection_train(request: TrainRequest):
# 데이터 전처리: 데이터를 학습데이터와 검증데이터로 분류
train_data, val_data = split_data(request.data, request.ratio)
# 데이터 전처리: 데이터 이미지 및 레이블 다운로드
download_data(train_data, val_data, dataset_root_path, label_converter)
# 학습
results = run_train(request, model,dataset_root_path)
results = await run_train(request, model,dataset_root_path)
# best 모델 저장
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
@ -171,7 +175,7 @@ def download_data(train_data:list[TrainDataInfo], val_data:list[TrainDataInfo],
except Exception as e:
raise HTTPException(status_code=500, detail="exception in download_data(): " + str(e))
def run_train(request, model, dataset_root_path):
async def run_train(request, model, dataset_root_path):
try:
# 데이터 전송 콜백함수
def send_data(trainer):
@ -206,7 +210,7 @@ def run_train(request, model, dataset_root_path):
model.add_callback("on_train_epoch_start", send_data)
# 학습 실행
results = model.train(
results = await run_in_threadpool(model.train,
data=join_path(dataset_root_path, "dataset.yaml"),
name=join_path(dataset_root_path, "result"),
epochs=request.epochs,

View File

@ -1,4 +1,5 @@
from fastapi import APIRouter, HTTPException
from fastapi.concurrency import run_in_threadpool
from api.yolo.detection import get_classes, run_predictions, get_random_color, split_data, download_data
from schemas.predict_request import PredictRequest
from schemas.train_request import TrainRequest
@ -27,7 +28,7 @@ async def segmentation_predict(request: PredictRequest):
classes = get_classes(request.label_map, model.names)
# 추론
results = run_predictions(model, url_list, request, classes)
results = await run_predictions(model, url_list, request, classes)
# 추론 결과 변환
response = [process_prediction_result(result, image, request.label_map) for result, image in zip(results,request.image_list)]
@ -101,7 +102,7 @@ async def segmentation_train(request: TrainRequest):
download_data(train_data, val_data, dataset_root_path, label_converter)
# 학습
results = run_train(request, model,dataset_root_path)
results = await run_train(request, model,dataset_root_path)
# best 모델 저장
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
@ -121,7 +122,7 @@ async def segmentation_train(request: TrainRequest):
return response
def run_train(request, model, dataset_root_path):
async def run_train(request, model, dataset_root_path):
try:
# 데이터 전송 콜백함수
def send_data(trainer):
@ -155,8 +156,9 @@ def run_train(request, model, dataset_root_path):
# 콜백 등록
model.add_callback("on_train_epoch_start", send_data)
# 학습 실행
results = model.train(
results = await run_in_threadpool(model.train,
data=join_path(dataset_root_path, "dataset.yaml"),
name=join_path(dataset_root_path, "result"),
epochs=request.epochs,