Merge branch 'ai/feat/classification' into 'ai/develop'

Fix: classification get_model() 파라미터 수정, 카테고리 없을 시 동작 수정

See merge request s11-s-project/S11P21S002!222
This commit is contained in:
김태수 2024-09-27 15:17:52 +09:00
commit 7ccd3b57d7

View File

@ -1,8 +1,8 @@
from fastapi import APIRouter, HTTPException from fastapi import APIRouter, HTTPException
from api.yolo.detection import get_classes, run_predictions, get_random_color, split_data from api.yolo.detection import run_predictions, get_random_color, split_data
from schemas.predict_request import PredictRequest from schemas.predict_request import PredictRequest
from schemas.train_request import TrainRequest, TrainDataInfo from schemas.train_request import TrainRequest, TrainDataInfo
from schemas.predict_response import PredictResponse, LabelData from schemas.predict_response import PredictResponse, LabelData, Shape
from schemas.train_report_data import ReportData from schemas.train_report_data import ReportData
from schemas.train_response import TrainResponse from schemas.train_response import TrainResponse
from services.load_model import load_classification_model from services.load_model import load_classification_model
@ -24,11 +24,8 @@ async def classification_predict(request: PredictRequest):
# 이미지 데이터 정리 # 이미지 데이터 정리
url_list = list(map(lambda x:x.image_url, request.image_list)) url_list = list(map(lambda x:x.image_url, request.image_list))
# 이 값을 모델에 입력하면 해당하는 클래스 id만 출력됨
classes = get_classes(request.label_map, model.names)
# 추론 # 추론
results = run_predictions(model, url_list, request, classes) results = run_predictions(model, url_list, request, classes=[]) # classification은 classes를 무시함
# 추론 결과 변환 # 추론 결과 변환
response = [process_prediction_result(result, image, request.label_map) for result, image in zip(results,request.image_list)] response = [process_prediction_result(result, image, request.label_map) for result, image in zip(results,request.image_list)]
@ -36,43 +33,53 @@ async def classification_predict(request: PredictRequest):
return response return response
# 모델 로드 # 모델 로드
def get_model(request: PredictRequest): def get_model(project_id:int, model_key:str):
try: try:
return load_classification_model(request.project_id, request.m_key) return load_classification_model(project_id, model_key)
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail="exception in get_model(): " + str(e)) raise HTTPException(status_code=500, detail="exception in get_model(): " + str(e))
# 추론 결과 처리 함수 # 추론 결과 처리 함수
def process_prediction_result(result, image, label_map): def process_prediction_result(result, image, label_map):
try: try:
label_name = None
# top 5에 해당하는 class id 순회
for class_id in result.probs.top5:
name = result.names[class_id] # class id에 해당하는 label_name
if name in label_map: # name이 사용자 레이블 카테고리에 있을 경우
label_name = name # label_name 설정
break
label_data = LabelData( label_data = LabelData(
version="0.0.0", version="0.0.0",
task_type="cls", task_type="cls",
shapes=[ shapes=[],
{
"label": summary['name'],
"color": get_random_color(),
"points": [
[0, 0]
],
"group_id": label_map[summary['name']],
"shape_type": "point",
"flags": {}
}
for summary in result.summary()
],
split="none", split="none",
imageHeight=result.orig_img.shape[0], imageHeight=result.orig_img.shape[0],
imageWidth=result.orig_img.shape[1], imageWidth=result.orig_img.shape[1],
imageDepth=result.orig_img.shape[2] imageDepth=result.orig_img.shape[2]
) )
if label_name: # label_name을 설정한게 있다면 추가
shape = Shape(
label= label_name,
color= get_random_color(),
points= [[0.0, 0.0]],
group_id= label_map[label_name],
shape_type= 'point',
flags= {}
)
LabelData.shapes.append(shape)
return PredictResponse(
image_id=image.image_id,
data=label_data.model_dump_json()
)
except KeyError as e:
raise HTTPException(status_code=500, detail="KeyError: " + str(e))
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail="exception in process_prediction_result(): " + str(e)) raise HTTPException(status_code=500, detail="exception in process_prediction_result(): " + str(e))
return PredictResponse(
image_id=image.image_id,
data=label_data.model_dump_json()
)
@router.post("/train") @router.post("/train")
async def classification_train(request: TrainRequest): async def classification_train(request: TrainRequest):