Fix: classification get_model() 파라미터 수정, 카테고리 없을 시 동작 수정
This commit is contained in:
parent
4b6751a00b
commit
3affff85f0
@ -1,8 +1,8 @@
|
||||
from fastapi import APIRouter, HTTPException
|
||||
from api.yolo.detection import get_classes, run_predictions, get_random_color, split_data
|
||||
from api.yolo.detection import run_predictions, get_random_color, split_data
|
||||
from schemas.predict_request import PredictRequest
|
||||
from schemas.train_request import TrainRequest, TrainDataInfo
|
||||
from schemas.predict_response import PredictResponse, LabelData
|
||||
from schemas.predict_response import PredictResponse, LabelData, Shape
|
||||
from schemas.train_report_data import ReportData
|
||||
from schemas.train_response import TrainResponse
|
||||
from services.load_model import load_classification_model
|
||||
@ -24,11 +24,8 @@ async def classification_predict(request: PredictRequest):
|
||||
# 이미지 데이터 정리
|
||||
url_list = list(map(lambda x:x.image_url, request.image_list))
|
||||
|
||||
# 이 값을 모델에 입력하면 해당하는 클래스 id만 출력됨
|
||||
classes = get_classes(request.label_map, model.names)
|
||||
|
||||
# 추론
|
||||
results = run_predictions(model, url_list, request, classes)
|
||||
results = run_predictions(model, url_list, request, classes=[]) # classification은 classes를 무시함
|
||||
|
||||
# 추론 결과 변환
|
||||
response = [process_prediction_result(result, image, request.label_map) for result, image in zip(results,request.image_list)]
|
||||
@ -36,43 +33,53 @@ async def classification_predict(request: PredictRequest):
|
||||
return response
|
||||
|
||||
# 모델 로드
|
||||
def get_model(request: PredictRequest):
|
||||
def get_model(project_id:int, model_key:str):
|
||||
try:
|
||||
return load_classification_model(request.project_id, request.m_key)
|
||||
return load_classification_model(project_id, model_key)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="exception in get_model(): " + str(e))
|
||||
|
||||
# 추론 결과 처리 함수
|
||||
def process_prediction_result(result, image, label_map):
|
||||
try:
|
||||
label_name = None
|
||||
# top 5에 해당하는 class id 순회
|
||||
for class_id in result.probs.top5:
|
||||
name = result.names[class_id] # class id에 해당하는 label_name
|
||||
if name in label_map: # name이 사용자 레이블 카테고리에 있을 경우
|
||||
label_name = name # label_name 설정
|
||||
break
|
||||
|
||||
label_data = LabelData(
|
||||
version="0.0.0",
|
||||
task_type="cls",
|
||||
shapes=[
|
||||
{
|
||||
"label": summary['name'],
|
||||
"color": get_random_color(),
|
||||
"points": [
|
||||
[0, 0]
|
||||
],
|
||||
"group_id": label_map[summary['name']],
|
||||
"shape_type": "point",
|
||||
"flags": {}
|
||||
}
|
||||
for summary in result.summary()
|
||||
],
|
||||
shapes=[],
|
||||
split="none",
|
||||
imageHeight=result.orig_img.shape[0],
|
||||
imageWidth=result.orig_img.shape[1],
|
||||
imageDepth=result.orig_img.shape[2]
|
||||
)
|
||||
|
||||
if label_name: # label_name을 설정한게 있다면 추가
|
||||
shape = Shape(
|
||||
label= label_name,
|
||||
color= get_random_color(),
|
||||
points= [[0.0, 0.0]],
|
||||
group_id= label_map[label_name],
|
||||
shape_type= 'point',
|
||||
flags= {}
|
||||
)
|
||||
LabelData.shapes.append(shape)
|
||||
|
||||
return PredictResponse(
|
||||
image_id=image.image_id,
|
||||
data=label_data.model_dump_json()
|
||||
)
|
||||
except KeyError as e:
|
||||
raise HTTPException(status_code=500, detail="KeyError: " + str(e))
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="exception in process_prediction_result(): " + str(e))
|
||||
|
||||
return PredictResponse(
|
||||
image_id=image.image_id,
|
||||
data=label_data.model_dump_json()
|
||||
)
|
||||
|
||||
@router.post("/train")
|
||||
async def classification_train(request: TrainRequest):
|
||||
@ -114,7 +121,7 @@ async def classification_train(request: TrainRequest):
|
||||
accuracy=result["accuracy_top1"],
|
||||
fitness= result["fitness"]
|
||||
)
|
||||
|
||||
|
||||
send_slack_message(f"train 성공{response}", status="success")
|
||||
|
||||
return response
|
||||
|
Loading…
Reference in New Issue
Block a user