worlabel/ai/app/api/yolo/detection.py

237 lines
9.0 KiB
Python

from fastapi import APIRouter, HTTPException
from schemas.predict_request import PredictRequest
from schemas.train_request import TrainRequest, TrainDataInfo
from schemas.predict_response import PredictResponse, LabelData, Shape
from schemas.train_report_data import ReportData
from schemas.train_response import TrainResponse
from services.load_model import load_detection_model
from services.create_model import save_model
from utils.file_utils import get_dataset_root_path, process_directories, join_path, process_image_and_label
from utils.slackMessage import send_slack_message
from utils.api_utils import send_data_call_api
import random, torch
router = APIRouter()
@router.post("/predict")
async def detection_predict(request: PredictRequest):
send_slack_message(f"predict 요청: {request}", status="success")
# 모델 로드
model = get_model(request.project_id, request.m_key)
# 이미지 데이터 정리
url_list = list(map(lambda x:x.image_url, request.image_list))
# 이 값을 모델에 입력하면 해당하는 클래스 id만 출력됨
classes = get_classes(request.label_map, model.names)
# 추론
results = run_predictions(model, url_list, request, classes)
# 추론 결과 변환
response = [process_prediction_result(result, image, request.label_map) for result, image in zip(results,request.image_list)]
send_slack_message(f"predict 성공{response}", status="success")
return response
# 모델 로드
def get_model(project_id, model_key):
try:
return load_detection_model(project_id, model_key)
except Exception as e:
raise HTTPException(status_code=500, detail="exception in get_model(): " + str(e))
# 모델의 레이블로부터 label_map의 key에 존재하는 값의 id만 가져오기
def get_classes(label_map:dict[str: int], model_names: dict[int, str]):
try:
return [id for id, name in model_names.items() if name in label_map]
except Exception as e:
raise HTTPException(status_code=500, detail="exception in get_classes(): " + str(e))
# 추론 실행 함수
def run_predictions(model, image, request, classes):
try:
with torch.no_grad():
result = model.predict(
source=image,
iou=request.iou_threshold,
conf=request.conf_threshold,
classes=classes
)
return result
except Exception as e:
raise HTTPException(status_code=500, detail="exception in run_predictions: " + str(e))
# 추론 결과 처리 함수
def process_prediction_result(result, image, label_map):
try:
label_data = LabelData(
version="0.0.0",
task_type="det",
shapes=[
Shape(
label= summary['name'],
color= get_random_color(),
points= [
[summary['box']['x1'], summary['box']['y1']],
[summary['box']['x2'], summary['box']['y2']]
],
group_id= label_map[summary['name']],
shape_type= "rectangle",
flags= {}
)
for summary in result.summary()
],
split="none",
imageHeight=result.orig_img.shape[0],
imageWidth=result.orig_img.shape[1],
imageDepth=result.orig_img.shape[2]
)
except KeyError as e:
raise HTTPException(status_code=500, detail="KeyError: " + str(e))
except Exception as e:
raise HTTPException(status_code=500, detail="exception in process_prediction_result(): " + str(e))
return PredictResponse(
image_id=image.image_id,
data=label_data.model_dump_json()
)
def get_random_color():
random_number = random.randint(0, 0xFFFFFF)
return f"#{random_number:06X}"
@router.post("/train")
async def detection_train(request: TrainRequest):
send_slack_message(f"train 요청{request}", status="success")
# 데이터셋 루트 경로 얻기 (프로젝트 id 기반)
dataset_root_path = get_dataset_root_path(request.project_id)
# 모델 로드
model = get_model(request.project_id, request.m_key)
# 이 값을 학습할때 넣으면 이 카테고리들이 학습됨
names = list(request.label_map)
# 레이블 변환기 (file_util.py/create_detection_train_label() 에 쓰임)
label_converter = {request.label_map[key]:idx for idx, key in enumerate(request.label_map)}
# key : 데이터에 저장된 프로젝트 카테고리 id
# value : 모델에 저장될 카테고리 id (모델에는 key의 idx 순서대로 저장될 것임)
# 데이터 전처리: 학습할 디렉토리 & 데이터셋 설정 파일을 생성
process_directories(dataset_root_path, names)
# 데이터 전처리: 데이터를 학습데이터와 검증데이터로 분류
train_data, val_data = split_data(request.data, request.ratio)
# 데이터 전처리: 데이터 이미지 및 레이블 다운로드
download_data(train_data, val_data, dataset_root_path, label_converter)
# 학습
results = run_train(request, model,dataset_root_path)
# best 모델 저장
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
result = results.results_dict
response = TrainResponse(
modelKey=model_key,
precision= result["metrics/precision(B)"],
recall= result["metrics/recall(B)"],
mAP50= result["metrics/mAP50(B)"],
mAP5095= result["metrics/mAP50-95(B)"],
accuracy=0,
fitness= result["fitness"]
)
send_slack_message(f"train 성공{response}", status="success")
return response
def split_data(data:list[TrainDataInfo], ratio:float):
try:
train_size = int(ratio * len(data))
random.shuffle(data)
train_data = data[:train_size]
val_data = data[train_size:]
if not train_data or not val_data:
raise Exception("data size is too small")
return train_data, val_data
except Exception as e:
raise HTTPException(status_code=500, detail="exception in split_data(): " + str(e))
def download_data(train_data:list[TrainDataInfo], val_data:list[TrainDataInfo], dataset_root_path:str, label_converter:dict[int, int]):
try:
for data in train_data:
process_image_and_label(data, dataset_root_path, "train", label_converter)
for data in val_data:
process_image_and_label(data, dataset_root_path, "val", label_converter)
except Exception as e:
raise HTTPException(status_code=500, detail="exception in download_data(): " + str(e))
def run_train(request, model, dataset_root_path):
try:
# 콜백 함수 정의
def send_data(trainer):
try:
# 첫번째 epoch는 스킵
if trainer.epoch == 0:
return
# 남은 시간 계산(초)
left_epochs = trainer.epochs - trainer.epoch
left_seconds = left_epochs * trainer.epoch_time
# 로스 box_loss, cls_loss, dfl_loss
loss = trainer.label_loss_items(loss_items=trainer.loss_items)
data = ReportData(
epoch=trainer.epoch, # 현재 에포크
total_epochs=trainer.epochs, # 전체 에포크
seg_loss=0, # seg_loss
box_loss=loss["train/box_loss"], # box loss
cls_loss=loss["train/cls_loss"], # cls loss
dfl_loss=loss["train/dfl_loss"], # dfl loss
fitness=trainer.fitness, # 적합도
epoch_time=trainer.epoch_time, # 지난 에포크 걸린 시간 (에포크 시작 기준으로 결정)
left_seconds=left_seconds # 남은 시간(초)
)
# 데이터 전송
send_data_call_api(request.project_id, request.m_id, data)
except Exception as e:
# 예외 처리
print(f"Exception in send_data(): {e}")
# 콜백 등록
model.add_callback("on_train_epoch_start", send_data)
try:
# 비동기 함수로 학습 실행
results = model.train(
data=join_path(dataset_root_path, "dataset.yaml"),
name=join_path(dataset_root_path, "result"),
epochs=request.epochs,
batch=request.batch,
lr0=request.lr0,
lrf=request.lrf,
optimizer=request.optimizer
)
finally:
# 콜백 해제 및 자원 해제
model.reset_callbacks()
torch.cuda.empty_cache()
# 마지막 에포크 전송
model.trainer.epoch += 1
send_data(model.trainer)
return results
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=f"exception in run_train(): {e}")