187 lines
7.0 KiB
Python
187 lines
7.0 KiB
Python
from fastapi import APIRouter, HTTPException
|
|
from fastapi.concurrency import run_in_threadpool
|
|
from api.yolo.detection import get_classes, run_predictions, get_random_color, split_data, download_data
|
|
from schemas.predict_request import PredictRequest
|
|
from schemas.train_request import TrainRequest
|
|
from schemas.predict_response import PredictResponse, LabelData
|
|
from schemas.train_report_data import ReportData
|
|
from schemas.train_response import TrainResponse
|
|
from services.load_model import load_segmentation_model
|
|
from services.create_model import save_model
|
|
from utils.file_utils import get_dataset_root_path, process_directories, join_path
|
|
from utils.slackMessage import send_slack_message
|
|
from utils.api_utils import send_data_call_api
|
|
|
|
router = APIRouter()
|
|
|
|
@router.post("/predict")
|
|
async def segmentation_predict(request: PredictRequest):
|
|
send_slack_message(f"predict 요청: {request}", status="success")
|
|
|
|
# 모델 로드
|
|
model = get_model(request.project_id, request.m_key)
|
|
|
|
# 이미지 데이터 정리
|
|
url_list = list(map(lambda x:x.image_url, request.image_list))
|
|
|
|
# 이 값을 모델에 입력하면 해당하는 클래스 id만 출력됨
|
|
classes = get_classes(request.label_map, model.names)
|
|
|
|
# 추론
|
|
results = await run_predictions(model, url_list, request, classes)
|
|
|
|
# 추론 결과 변환
|
|
response = [process_prediction_result(result, image, request.label_map) for result, image in zip(results,request.image_list)]
|
|
send_slack_message(f"predict 성공{response}", status="success")
|
|
return response
|
|
|
|
# 모델 로드
|
|
def get_model(project_id:int, model_key:str):
|
|
try:
|
|
return load_segmentation_model(project_id, model_key)
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail="load model exception: " + str(e))
|
|
|
|
# 추론 결과 처리 함수
|
|
def process_prediction_result(result, image, label_map):
|
|
try:
|
|
label_data = LabelData(
|
|
version="0.0.0",
|
|
task_type="seg",
|
|
shapes=[
|
|
{
|
|
"label": summary['name'],
|
|
"color": get_random_color(),
|
|
"points": list(zip(summary['segments']['x'], summary['segments']['y'])),
|
|
"group_id": label_map[summary['name']],
|
|
"shape_type": "polygon",
|
|
"flags": {}
|
|
}
|
|
for summary in result.summary()
|
|
],
|
|
split="none",
|
|
imageHeight=result.orig_img.shape[0],
|
|
imageWidth=result.orig_img.shape[1],
|
|
imageDepth=result.orig_img.shape[2]
|
|
)
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
|
|
|
|
return PredictResponse(
|
|
image_id=image.image_id,
|
|
data=label_data.model_dump_json()
|
|
)
|
|
|
|
|
|
@router.post("/train")
|
|
async def segmentation_train(request: TrainRequest):
|
|
|
|
send_slack_message(f"train 요청{request}", status="success")
|
|
|
|
# 데이터셋 루트 경로 얻기 (프로젝트 id 기반)
|
|
dataset_root_path = get_dataset_root_path(request.project_id)
|
|
|
|
# 모델 로드
|
|
model = get_model(request.project_id, request.m_key)
|
|
|
|
# 이 값을 학습할때 넣으면 이 카테고리들이 학습됨
|
|
names = list(request.label_map)
|
|
|
|
# 레이블 변환기 (file_util.py/create_segmentation_train_label() 에 쓰임)
|
|
label_converter = {request.label_map[key]:idx for idx, key in enumerate(request.label_map)}
|
|
# key : 데이터에 저장된 프로젝트 카테고리 id
|
|
# value : 모델에 저장될 카테고리 id (모델에는 key의 idx 순서대로 저장될 것임)
|
|
|
|
# 데이터 전처리: 학습할 디렉토리 & 데이터셋 설정 파일을 생성
|
|
process_directories(dataset_root_path, names)
|
|
|
|
# 데이터 전처리: 데이터를 학습데이터와 검증데이터로 분류
|
|
train_data, val_data = split_data(request.data, request.ratio)
|
|
|
|
# 데이터 전처리: 데이터 이미지 및 레이블 다운로드
|
|
download_data(train_data, val_data, dataset_root_path, label_converter)
|
|
|
|
# 학습
|
|
results = await run_train(request, model,dataset_root_path)
|
|
|
|
# best 모델 저장
|
|
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
|
|
|
|
result = results.results_dict
|
|
|
|
response = TrainResponse(
|
|
modelKey=model_key,
|
|
precision= result["metrics/precision(M)"],
|
|
recall= result["metrics/recall(M)"],
|
|
mAP50= result["metrics/mAP50(M)"],
|
|
mAP5095= result["metrics/mAP50-95(M)"],
|
|
accuracy = 0,
|
|
fitness= result["fitness"]
|
|
)
|
|
send_slack_message(f"train 성공{response}", status="success")
|
|
|
|
return response
|
|
|
|
async def run_train(request, model, dataset_root_path):
|
|
try:
|
|
# 데이터 전송 콜백함수
|
|
def send_data(trainer):
|
|
try:
|
|
# 첫번째 epoch는 스킵
|
|
if trainer.epoch == 0:
|
|
return
|
|
|
|
# 남은 시간 계산(초)
|
|
left_epochs = trainer.epochs - trainer.epoch
|
|
left_seconds = left_epochs * trainer.epoch_time
|
|
|
|
# 로스 box_loss, cls_loss, dfl_loss
|
|
loss = trainer.label_loss_items(loss_items=trainer.loss_items)
|
|
data = ReportData(
|
|
epoch=trainer.epoch, # 현재 에포크
|
|
total_epochs=trainer.epochs, # 전체 에포크
|
|
seg_loss=loss["train/seg_loss"], # seg_loss
|
|
box_loss=0, # box loss
|
|
cls_loss=loss["train/cls_loss"], # cls loss
|
|
dfl_loss=0, # dfl loss
|
|
fitness=trainer.fitness, # 적합도
|
|
epoch_time=trainer.epoch_time, # 지난 에포크 걸린 시간 (에포크 시작 기준으로 결정)
|
|
left_seconds=left_seconds # 남은 시간(초)
|
|
)
|
|
# 데이터 전송
|
|
send_data_call_api(request.project_id, request.m_id, data)
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=f"send_data exception: {e}")
|
|
|
|
# 콜백 등록
|
|
model.add_callback("on_train_epoch_start", send_data)
|
|
|
|
|
|
# 학습 실행
|
|
results = await run_in_threadpool(model.train,
|
|
data=join_path(dataset_root_path, "dataset.yaml"),
|
|
name=join_path(dataset_root_path, "result"),
|
|
epochs=request.epochs,
|
|
batch=request.batch,
|
|
lr0=request.lr0,
|
|
lrf=request.lrf,
|
|
optimizer=request.optimizer
|
|
)
|
|
|
|
# 마지막 에포크 전송
|
|
model.trainer.epoch += 1
|
|
send_data(model.trainer)
|
|
return results
|
|
|
|
except HTTPException as e:
|
|
raise e # HTTP 예외를 다시 발생
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=f"run_train exception: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|