aae8faf11e
- 추가적으로 api endpoint 이름과 swagger 관련 설정
206 lines
7.6 KiB
Python
206 lines
7.6 KiB
Python
import json
|
|
|
|
from fastapi import APIRouter, HTTPException
|
|
from schemas.predict_request import PredictRequest
|
|
from schemas.train_request import TrainRequest
|
|
from schemas.predict_response import PredictResponse, LabelData
|
|
from services.load_model import load_detection_model
|
|
from utils.dataset_utils import split_data
|
|
from utils.file_utils import get_dataset_root_path, process_directories, process_image_and_label, join_path
|
|
from typing import List
|
|
from utils.websocket_utils import WebSocketClient
|
|
import asyncio
|
|
|
|
|
|
router = APIRouter()
|
|
|
|
@router.post("/predict", response_model=List[PredictResponse])
|
|
async def detection_predict(request: PredictRequest):
|
|
version = "0.1.0"
|
|
print("여기")
|
|
|
|
# Spring 서버의 WebSocket URL
|
|
# TODO: 배포 시 변경
|
|
spring_server_ws_url = f"ws://localhost:8080/ws"
|
|
|
|
print("여기")
|
|
# WebSocketClient 인스턴스 생성
|
|
ws_client = WebSocketClient(spring_server_ws_url)
|
|
|
|
try:
|
|
await ws_client.connect()
|
|
|
|
# 모델 로드
|
|
try:
|
|
model = load_detection_model()
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail="load model exception: " + str(e))
|
|
|
|
# 추론
|
|
results = []
|
|
total_images = len(request.image_list)
|
|
for idx, image in enumerate(request.image_list):
|
|
try:
|
|
# URL에서 이미지를 메모리로 로드 TODO: 추후 메모리에 할지 어떻게 해야할지 or 병렬 처리 고민
|
|
|
|
predict_results = model.predict(
|
|
source=image.image_url,
|
|
iou=request.iou_threshold,
|
|
conf=request.conf_threshold,
|
|
classes=request.classes
|
|
)
|
|
# 예측 결과 처리
|
|
result = predict_results[0]
|
|
label_data = LabelData(
|
|
version=version,
|
|
task_type="det",
|
|
shapes=[
|
|
{
|
|
"label": summary['name'],
|
|
"color": "#ff0000",
|
|
"points": [
|
|
[summary['box']['x1'], summary['box']['y1']],
|
|
[summary['box']['x2'], summary['box']['y2']]
|
|
],
|
|
"group_id": summary['class'],
|
|
"shape_type": "rectangle",
|
|
"flags": {}
|
|
}
|
|
for summary in result.summary()
|
|
],
|
|
split="none",
|
|
imageHeight=result.orig_img.shape[0],
|
|
imageWidth=result.orig_img.shape[1],
|
|
imageDepth=result.orig_img.shape[2]
|
|
)
|
|
|
|
response_item = PredictResponse(
|
|
image_id=image.image_id,
|
|
image_url=image.image_url,
|
|
data=label_data
|
|
)
|
|
|
|
# 진행률 계산
|
|
progress = (idx + 1) / total_images * 100
|
|
|
|
# 웹소켓으로 예측 결과와 진행률 전송
|
|
message = {
|
|
"project_id": request.project_id,
|
|
"progress": progress,
|
|
"result": response_item.dict()
|
|
}
|
|
|
|
await ws_client.send_message("/app/ai/predict/progress", json.dumps(message))
|
|
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
|
|
|
|
# 추론 결과 -> 레이블 객체 파싱
|
|
response = []
|
|
try:
|
|
for (image, result) in zip(request.image_list, results):
|
|
label_data: LabelData = {
|
|
"version": version,
|
|
"task_type": "det",
|
|
"shapes": [
|
|
{
|
|
"label": summary['name'],
|
|
"color": "#ff0000",
|
|
"points": [
|
|
[summary['box']['x1'], summary['box']['y1']],
|
|
[summary['box']['x2'], summary['box']['y2']]
|
|
],
|
|
"group_id": summary['class'],
|
|
"shape_type": "rectangle",
|
|
"flags": {}
|
|
}
|
|
for summary in result.summary()
|
|
],
|
|
"split": "none",
|
|
"imageHeight": result.orig_img.shape[0],
|
|
"imageWidth": result.orig_img.shape[1],
|
|
"imageDepth": result.orig_img.shape[2]
|
|
}
|
|
response.append({
|
|
"image_id": image.image_id,
|
|
"image_url": image.image_url,
|
|
"data": label_data
|
|
})
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail="label parsing exception: " + str(e))
|
|
|
|
return response
|
|
|
|
except Exception as e:
|
|
print(f"Prediction process failed: {str(e)}")
|
|
raise HTTPException(status_code=500, detail="Prediction process failed")
|
|
|
|
finally:
|
|
if ws_client.is_connected():
|
|
await ws_client.close()
|
|
|
|
|
|
@router.post("/train")
|
|
async def detection_train(request: TrainRequest):
|
|
# 데이터셋 루트 경로 얻기
|
|
dataset_root_path = get_dataset_root_path(request.project_id)
|
|
|
|
# 디렉토리 생성 및 초기화
|
|
process_directories(dataset_root_path)
|
|
|
|
# 학습 데이터 분류
|
|
train_data, val_data = split_data(request.data, request.ratio, request.seed)
|
|
|
|
# Spring 서버의 WebSocket URL
|
|
# TODO: 배포시에 변경
|
|
spring_server_ws_url = f"ws://localhost:8080/ws"
|
|
|
|
# WebSocketClient 인스턴스 생성
|
|
ws_client = WebSocketClient(spring_server_ws_url)
|
|
|
|
|
|
try:
|
|
await ws_client.connect()
|
|
|
|
# 학습 데이터 처리
|
|
total_data = len(train_data)
|
|
for idx, data in enumerate(train_data):
|
|
# TODO: 비동기면 await 연결
|
|
# process_image_and_label(data, dataset_root_path, "train")
|
|
|
|
# 진행률 계산
|
|
progress = (idx + 1) / total_data * 100
|
|
|
|
await ws_client.send_message("/app/ai/train/progress", f"학습 데이터 처리 중 {request.project_id}: {progress:.2f}% 완료")
|
|
|
|
# 검증 데이터 처리
|
|
total_val_data = len(val_data)
|
|
for idx, data in enumerate(val_data):
|
|
# TODO: 비동기면 await 연결
|
|
# process_image_and_label(data, dataset_root_path, "val")
|
|
|
|
# 진행률 계산
|
|
progress = (idx + 1) / total_val_data * 100
|
|
# 웹소켓으로 메시지 전송 (필요할 경우 추가)
|
|
await ws_client.send_message("/app/ai/val/progress", f"검증 데이터 처리 중 {request.project_id}: {progress:.2f}% 완료")
|
|
|
|
model = load_detection_model("test-data/model/best.pt")
|
|
model.train(
|
|
data=join_path(dataset_root_path, "dataset.yaml"),
|
|
name=join_path(dataset_root_path, "result"),
|
|
epochs=request.epochs,
|
|
batch=request.batch,
|
|
)
|
|
|
|
# return FileResponse(path=join_path(dataset_root_path, "result", "weights", "best.pt"), filename="best.pt", media_type="application/octet-stream")
|
|
|
|
return {"status": "Training completed successfully"}
|
|
|
|
except Exception as e:
|
|
print(f"Training process failed: {str(e)}")
|
|
raise HTTPException(status_code=500, detail="Training process failed")
|
|
|
|
finally:
|
|
if ws_client.is_connected():
|
|
await ws_client.close()
|