Feat: classification API 구현
This commit is contained in:
parent
4d49b925dc
commit
cae5fb5ae4
@ -6,7 +6,7 @@ from schemas.train_report_data import ReportData
|
||||
from services.load_model import load_classification_model
|
||||
from services.create_model import save_model
|
||||
from utils.dataset_utils import split_data
|
||||
from utils.file_utils import get_dataset_root_path, process_directories, process_image_and_label, join_path
|
||||
from utils.file_utils import get_dataset_root_path, process_directories_in_cls, process_image_and_label_in_cls, join_path
|
||||
from utils.slackMessage import send_slack_message
|
||||
from utils.api_utils import send_data_call_api
|
||||
import random
|
||||
@ -17,7 +17,7 @@ router = APIRouter()
|
||||
@router.post("/predict")
|
||||
async def classification_predict(request: PredictRequest):
|
||||
|
||||
send_slack_message(f"predict 요청: {request}", status="success")
|
||||
send_slack_message(f"cls predict 요청: {request}", status="success")
|
||||
|
||||
# 모델 로드
|
||||
model = get_model(request)
|
||||
@ -61,17 +61,16 @@ def process_prediction_result(result, image, label_map):
|
||||
try:
|
||||
label_data = LabelData(
|
||||
version="0.0.0",
|
||||
task_type="det",
|
||||
task_type="cls",
|
||||
shapes=[
|
||||
{
|
||||
"label": summary['name'],
|
||||
"color": get_random_color(),
|
||||
"points": [
|
||||
[summary['box']['x1'], summary['box']['y1']],
|
||||
[summary['box']['x2'], summary['box']['y2']]
|
||||
[0, 0]
|
||||
],
|
||||
"group_id": label_map[summary['class']] if label_map else summary['class'],
|
||||
"shape_type": "rectangle",
|
||||
"shape_type": "point",
|
||||
"flags": {}
|
||||
}
|
||||
for summary in result.summary()
|
||||
@ -96,16 +95,9 @@ def get_random_color():
|
||||
|
||||
|
||||
@router.post("/train")
|
||||
async def classification_train(request: TrainRequest, http_request: Request):
|
||||
async def classification_train(request: TrainRequest):
|
||||
|
||||
send_slack_message(f"train 요청{request}", status="success")
|
||||
|
||||
# Authorization 헤더에서 Bearer 토큰 추출
|
||||
auth_header = http_request.headers.get("Authorization")
|
||||
token = auth_header.split(" ")[1] if auth_header and auth_header.startswith("Bearer ") else None
|
||||
|
||||
# 레이블 맵
|
||||
inverted_label_map = {value: key for key, value in request.label_map.items()} if request.label_map else None
|
||||
send_slack_message(f"cls train 요청{request}", status="success")
|
||||
|
||||
# 데이터셋 루트 경로 얻기
|
||||
dataset_root_path = get_dataset_root_path(request.project_id)
|
||||
@ -117,10 +109,10 @@ async def classification_train(request: TrainRequest, http_request: Request):
|
||||
model_categories = model.names
|
||||
|
||||
# 데이터 전처리
|
||||
preprocess_dataset(dataset_root_path, model_categories, request.data, request.ratio, inverted_label_map)
|
||||
preprocess_dataset(dataset_root_path, model_categories, request.data, request.ratio)
|
||||
|
||||
# 학습
|
||||
results = run_train(request,token,model,dataset_root_path)
|
||||
results = run_train(request,model,dataset_root_path)
|
||||
|
||||
# best 모델 저장
|
||||
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
|
||||
@ -132,30 +124,30 @@ async def classification_train(request: TrainRequest, http_request: Request):
|
||||
return response
|
||||
|
||||
|
||||
def preprocess_dataset(dataset_root_path, model_categories, data, ratio, label_map):
|
||||
def preprocess_dataset(dataset_root_path, model_categories, data, ratio):
|
||||
try:
|
||||
# 디렉토리 생성 및 초기화
|
||||
process_directories(dataset_root_path, model_categories)
|
||||
process_directories_in_cls(dataset_root_path, model_categories)
|
||||
|
||||
# 학습 데이터 분류
|
||||
train_data, val_data = split_data(data, ratio)
|
||||
if not train_data or not val_data:
|
||||
train_data, test_data = split_data(data, ratio)
|
||||
if not train_data or not test_data:
|
||||
raise HTTPException(status_code=400, detail="data split exception: data size is too small or \"ratio\" has invalid value")
|
||||
|
||||
# 학습 데이터 처리
|
||||
for data in train_data:
|
||||
process_image_and_label(data, dataset_root_path, "train", label_map)
|
||||
process_image_and_label_in_cls(data, dataset_root_path, "train")
|
||||
|
||||
# 검증 데이터 처리
|
||||
for data in val_data:
|
||||
process_image_and_label(data, dataset_root_path, "val", label_map)
|
||||
for data in test_data:
|
||||
process_image_and_label_in_cls(data, dataset_root_path, "test")
|
||||
|
||||
except HTTPException as e:
|
||||
raise e # HTTP 예외를 다시 발생
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="preprocess dataset exception: " + str(e))
|
||||
|
||||
def run_train(request, token, model, dataset_root_path):
|
||||
def run_train(request, model, dataset_root_path):
|
||||
try:
|
||||
# 데이터 전송 콜백함수
|
||||
def send_data(trainer):
|
||||
@ -173,15 +165,15 @@ def run_train(request, token, model, dataset_root_path):
|
||||
data = ReportData(
|
||||
epoch=trainer.epoch, # 현재 에포크
|
||||
total_epochs=trainer.epochs, # 전체 에포크
|
||||
box_loss=loss["train/box_loss"], # box loss
|
||||
cls_loss=loss["train/cls_loss"], # cls loss
|
||||
dfl_loss=loss["train/dfl_loss"], # dfl loss
|
||||
box_loss=0, # box loss
|
||||
cls_loss=loss["train/loss"], # cls loss
|
||||
dfl_loss=0, # dfl loss
|
||||
fitness=trainer.fitness, # 적합도
|
||||
epoch_time=trainer.epoch_time, # 지난 에포크 걸린 시간 (에포크 시작 기준으로 결정)
|
||||
left_seconds=left_seconds # 남은 시간(초)
|
||||
)
|
||||
# 데이터 전송
|
||||
send_data_call_api(request.project_id, request.m_id, data, token)
|
||||
send_data_call_api(request.project_id, request.m_id, data)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"send_data exception: {e}")
|
||||
|
||||
@ -189,9 +181,8 @@ def run_train(request, token, model, dataset_root_path):
|
||||
model.add_callback("on_train_epoch_start", send_data)
|
||||
|
||||
# 학습 실행
|
||||
try:
|
||||
results = model.train(
|
||||
data=join_path(dataset_root_path, "dataset.yaml"),
|
||||
data=dataset_root_path,
|
||||
name=join_path(dataset_root_path, "result"),
|
||||
epochs=request.epochs,
|
||||
batch=request.batch,
|
||||
@ -199,9 +190,6 @@ def run_train(request, token, model, dataset_root_path):
|
||||
lrf=request.lrf,
|
||||
optimizer=request.optimizer
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"model train exception: {e}")
|
||||
|
||||
# 마지막 에포크 전송
|
||||
model.trainer.epoch += 1
|
||||
send_data(model.trainer)
|
||||
|
@ -101,7 +101,6 @@ async def detection_train(request: TrainRequest):
|
||||
|
||||
send_slack_message(f"train 요청{request}", status="success")
|
||||
|
||||
# Authorization 헤더에서 Bearer 토큰 추출
|
||||
try:
|
||||
# 레이블 맵
|
||||
inverted_label_map = {value: key for key, value in request.label_map.items()} if request.label_map else None
|
||||
|
@ -4,6 +4,7 @@ from fastapi.exceptions import RequestValidationError
|
||||
from starlette.exceptions import HTTPException
|
||||
from api.yolo.detection import router as yolo_detection_router
|
||||
from api.yolo.segmentation import router as yolo_segmentation_router
|
||||
from api.yolo.classfication import router as yolo_classification_router
|
||||
from api.yolo.model import router as yolo_model_router
|
||||
from utils.slackMessage import send_slack_message
|
||||
|
||||
@ -12,6 +13,7 @@ app = FastAPI()
|
||||
# 각 기능별 라우터를 애플리케이션에 등록
|
||||
app.include_router(yolo_detection_router, prefix="/api/detection", tags=["Detection"])
|
||||
app.include_router(yolo_segmentation_router, prefix="/api/segmentation", tags=["Segmentation"])
|
||||
app.include_router(yolo_classification_router, prefix="/api/classification", tags=["Classification"])
|
||||
app.include_router(yolo_model_router, prefix="/api/model", tags=["Model"])
|
||||
|
||||
|
||||
|
@ -10,7 +10,7 @@ def load_detection_model(project_id:int, model_key:str):
|
||||
if model_key in default_model_map:
|
||||
model = YOLO(default_model_map[model_key])
|
||||
else:
|
||||
model = load_model(model_path=os.path.join("projects",str(project_id),"models", model_key))
|
||||
model = load_model(model_path=os.path.join("resources", "projects",str(project_id),"models", model_key))
|
||||
|
||||
# Detection 모델인지 검증
|
||||
if model.task != "detect":
|
||||
@ -23,13 +23,26 @@ def load_segmentation_model(project_id:int, model_key:str):
|
||||
if model_key in default_model_map:
|
||||
model = YOLO(default_model_map[model_key])
|
||||
else:
|
||||
model = load_model(model_path=os.path.join("projects",str(project_id),"models",model_key))
|
||||
model = load_model(model_path=os.path.join("resources", "projects",str(project_id),"models",model_key))
|
||||
|
||||
# Segmentation 모델인지 검증
|
||||
if model.task != "segment":
|
||||
raise TypeError(f"Invalid model type: {model.task}. Expected a SegmentationModel.")
|
||||
return model
|
||||
|
||||
def load_classification_model(project_id:int, model_key:str):
|
||||
default_model_map = {"yolo8": os.path.join("resources","models","yolov8n-cls.pt")}
|
||||
# 디폴트 모델 확인
|
||||
if model_key in default_model_map:
|
||||
model = YOLO(default_model_map[model_key])
|
||||
else:
|
||||
model = load_model(model_path=os.path.join("resources", "projects",str(project_id),"models",model_key))
|
||||
|
||||
# Segmentation 모델인지 검증
|
||||
if model.task != "classify":
|
||||
raise TypeError(f"Invalid model type: {model.task}. Expected a ClassificationModel.")
|
||||
return model
|
||||
|
||||
def load_model(model_path: str):
|
||||
if not os.path.exists(model_path):
|
||||
raise FileNotFoundError(f"Model file not found at path: {model_path}")
|
||||
|
@ -24,7 +24,7 @@ def make_yml(path:str, model_categories):
|
||||
data = {
|
||||
"train": f"{path}/train",
|
||||
"val": f"{path}/val",
|
||||
"nc": 80,
|
||||
"nc": len(model_categories),
|
||||
"names": model_categories
|
||||
}
|
||||
with open(os.path.join(path, "dataset.yaml"), 'w') as f:
|
||||
@ -117,3 +117,28 @@ def get_file_name(path):
|
||||
if not os.path.exists(path):
|
||||
raise FileNotFoundError()
|
||||
return os.path.basename(path)
|
||||
|
||||
def process_directories_in_cls(dataset_root_path:str, model_categories:dict[int,str]):
|
||||
"""classification 학습을 위한 디렉토리 생성"""
|
||||
make_dir(dataset_root_path, init=False)
|
||||
for category in model_categories.values():
|
||||
make_dir(os.path.join(dataset_root_path, "train", category), init=True)
|
||||
make_dir(os.path.join(dataset_root_path, "test", category), init=True)
|
||||
if os.path.exists(os.path.join(dataset_root_path, "result")):
|
||||
shutil.rmtree(os.path.join(dataset_root_path, "result"))
|
||||
|
||||
def process_image_and_label_in_cls(data:TrainDataInfo, dataset_root_path:str, child_path:str):
|
||||
"""이미지 저장 및 레이블 파일 생성"""
|
||||
# 이미지 url로부터 파일명 분리
|
||||
img_name = data.image_url.split('/')[-1]
|
||||
|
||||
# 레이블 객체 불러오기
|
||||
label = json.loads(urllib.request.urlopen(data.data_url).read())
|
||||
|
||||
label_name = label["shapes"][0]["label"]
|
||||
|
||||
label_path = os.path.join(dataset_root_path,child_path,label_name)
|
||||
|
||||
# url로부터 이미지 다운로드
|
||||
urllib.request.urlretrieve(data.image_url, os.path.join(label_path, img_name))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user