Feat: 백엔드 API 연동

This commit is contained in:
김용수 2024-09-23 16:34:07 +09:00
parent c6ef8ea5fc
commit a827a967c7
3 changed files with 73 additions and 122 deletions

2
ai/.gitignore vendored
View File

@ -38,3 +38,5 @@ test-data/
resources/
datasets/
*.pt
*.jpg

View File

@ -23,139 +23,89 @@ async def detection_predict(request: PredictRequest):
ws_client = WebSocketClient(spring_server_ws_url)
# 모델 로드
try:
model_path = request.m_key and get_model_path(request.project_id, request.m_key)
model = load_detection_model(model_path=model_path)
except Exception as e:
raise HTTPException(status_code=500, detail="load model exception: " + str(e))
model = load_model(request)
# 모델 레이블 카테고리 연결
classes = None
if request.label_map:
classes = list(request.label_map)
classes = list(request.label_map) if request.label_map else None
# 결과를 저장할 리스트
response = []
# 웹소켓 연결
try:
await ws_client.connect()
if not ws_client.is_connected():
raise WebSocketConnectionException()
await connect_to_websocket(ws_client)
# 추론
total_images = len(request.image_list)
try:
for idx, image in enumerate(request.image_list):
try:
# URL에서 이미지를 메모리로 로드 TODO: 추후 메모리에 할지 어떻게 해야할지 or 병렬 처리 고민
predict_results = model.predict(
source=image.image_url,
iou=request.iou_threshold,
conf=request.conf_threshold,
classes=classes
)
# 예측 결과 처리
result = predict_results[0]
label_data = LabelData(
version="0.0.0",
task_type="det",
shapes=[
{
"label": summary['name'],
"color": "#ff0000",
"points": [
[summary['box']['x1'], summary['box']['y1']],
[summary['box']['x2'], summary['box']['y2']]
],
"group_id": request.label_map[summary['class']] if request.label_map else summary['class'],
"shape_type": "rectangle",
"flags": {}
}
for summary in result.summary()
],
split="none",
imageHeight=result.orig_img.shape[0],
imageWidth=result.orig_img.shape[1],
imageDepth=result.orig_img.shape[2]
)
response_item = PredictResponse(
image_id=image.image_id,
image_url=image.image_url,
data=label_data
)
# 진행률 계산
progress = (idx + 1) / total_images * 100
# 웹소켓으로 예측 결과와 진행률 전송
message = {
"project_id": request.project_id,
"progress": progress,
"result": response_item.model_dump()
}
await ws_client.send_message("/app/ai/predict/progress", json.dumps(message))
except Exception as e:
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
return Response(status_code=204)
# 웹소켓 연결 안된 경우
except WebSocketConnectionException as e:
# 추론
response = []
for image in request.image_list:
try:
predict_results = model.predict(
source=image.image_url,
iou=request.iou_threshold,
conf=request.conf_threshold,
classes=classes
)
# 예측 결과 처리
result = predict_results[0]
label_data = LabelData(
version="0.0.0",
task_type="det",
shapes=[
{
"label": summary['name'],
"color": "#ff0000",
"points": [
[summary['box']['x1'], summary['box']['y1']],
[summary['box']['x2'], summary['box']['y2']]
],
"group_id": request.label_map[summary['class']] if request.label_map else summary['class'],
"shape_type": "rectangle",
"flags": {}
}
for summary in result.summary()
],
split="none",
imageHeight=result.orig_img.shape[0],
imageWidth=result.orig_img.shape[1],
imageDepth=result.orig_img.shape[2]
)
response_item = PredictResponse(
image_id=image.image_id,
image_url=image.image_url,
data=label_data
)
result = run_predictions(model, image, request, classes)
response_item = process_prediction_result(result, request, image)
response.append(response_item)
except Exception as e:
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
return response
except Exception as e:
print(f"Prediction process failed: {str(e)}")
raise HTTPException(status_code=500, detail="Prediction process failed")
finally:
if ws_client.is_connected():
await ws_client.close()
# 모델 로드
def load_model(request: PredictRequest):
try:
model_path = request.m_key and get_model_path(request.project_id, request.m_key)
return load_detection_model(model_path=model_path)
except Exception as e:
raise HTTPException(status_code=500, detail="load model exception: " + str(e))
# 웹소켓 연결
async def connect_to_websocket(ws_client):
try:
await ws_client.connect()
if not ws_client.is_connected():
raise WebSocketConnectionException("웹 소켓 연결 실패")
except Exception as e:
raise HTTPException(status_code=500, detail="websocket connect failed: " + str(e))
# 추론 실행 함수
def run_predictions(model, image, request, classes):
try:
predict_results = model.predict(
source=image.image_url,
iou=request.iou_threshold,
conf=request.conf_threshold,
classes=classes
)
return predict_results[0]
except Exception as e:
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
# 추론 결과 처리 함수
def process_prediction_result(result, request, image):
label_data = LabelData(
version="0.0.0",
task_type="det",
shapes=[
{
"label": summary['name'],
"color": "#ff0000",
"points": [
[summary['box']['x1'], summary['box']['y1']],
[summary['box']['x2'], summary['box']['y2']]
],
"group_id": request.label_map[summary['class']] if request.label_map else summary['class'],
"shape_type": "rectangle",
"flags": {}
}
for summary in result.summary()
],
split="none",
imageHeight=result.orig_img.shape[0],
imageWidth=result.orig_img.shape[1],
imageDepth=result.orig_img.shape[2]
)
return PredictResponse(
image_id=image.image_id,
data=json.dumps(label_data.dict())
)
@router.post("/train")
async def detection_train(request: TrainRequest):

View File

@ -20,5 +20,4 @@ class LabelData(BaseModel):
class PredictResponse(BaseModel):
image_id: int
image_url: str
data: LabelData
data: str