Merge branch 'ai/feat/classification' into 'ai/develop'

Ai/feat/classification

See merge request s11-s-project/S11P21S002!220
This commit is contained in:
김태수 2024-09-27 14:20:12 +09:00
commit 9f269d8e5e
5 changed files with 59 additions and 64 deletions

View File

@ -1,32 +1,32 @@
from fastapi import APIRouter, HTTPException, Request from fastapi import APIRouter, HTTPException
from api.yolo.detection import get_classes, run_predictions, get_random_color, split_data
from schemas.predict_request import PredictRequest from schemas.predict_request import PredictRequest
from schemas.train_request import TrainRequest from schemas.train_request import TrainRequest, TrainDataInfo
from schemas.predict_response import PredictResponse, LabelData from schemas.predict_response import PredictResponse, LabelData
from schemas.train_report_data import ReportData from schemas.train_report_data import ReportData
from schemas.train_response import TrainResponse
from services.load_model import load_classification_model from services.load_model import load_classification_model
from services.create_model import save_model from services.create_model import save_model
from utils.file_utils import get_dataset_root_path, process_directories_in_cls, process_image_and_label_in_cls, join_path from utils.file_utils import get_dataset_root_path, process_directories_in_cls, process_image_and_label_in_cls, join_path
from utils.slackMessage import send_slack_message from utils.slackMessage import send_slack_message
from utils.api_utils import send_data_call_api from utils.api_utils import send_data_call_api
import random
router = APIRouter() router = APIRouter()
@router.post("/predict") @router.post("/predict")
async def classification_predict(request: PredictRequest): async def classification_predict(request: PredictRequest):
send_slack_message(f"cls predict 요청: {request}", status="success") send_slack_message(f"predict 요청: {request}", status="success")
# 모델 로드 # 모델 로드
model = get_model(request) model = get_model(request.project_id, request.m_key)
# 모델 레이블 카테고리 연결
classes = list(request.label_map) if request.label_map else None
# 이미지 데이터 정리 # 이미지 데이터 정리
url_list = list(map(lambda x:x.image_url, request.image_list)) url_list = list(map(lambda x:x.image_url, request.image_list))
# 이 값을 모델에 입력하면 해당하는 클래스 id만 출력됨
classes = get_classes(request.label_map, model.names)
# 추론 # 추론
results = run_predictions(model, url_list, request, classes) results = run_predictions(model, url_list, request, classes)
@ -40,20 +40,7 @@ def get_model(request: PredictRequest):
try: try:
return load_classification_model(request.project_id, request.m_key) return load_classification_model(request.project_id, request.m_key)
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail="load model exception: " + str(e)) raise HTTPException(status_code=500, detail="exception in get_model(): " + str(e))
# 추론 실행 함수
def run_predictions(model, image, request, classes):
try:
return model.predict(
source=image,
iou=request.iou_threshold,
conf=request.conf_threshold,
classes=classes
)
except Exception as e:
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
# 추론 결과 처리 함수 # 추론 결과 처리 함수
def process_prediction_result(result, image, label_map): def process_prediction_result(result, image, label_map):
@ -68,7 +55,7 @@ def process_prediction_result(result, image, label_map):
"points": [ "points": [
[0, 0] [0, 0]
], ],
"group_id": label_map[summary['class']] if label_map else summary['class'], "group_id": label_map[summary['name']],
"shape_type": "point", "shape_type": "point",
"flags": {} "flags": {}
} }
@ -80,71 +67,68 @@ def process_prediction_result(result, image, label_map):
imageDepth=result.orig_img.shape[2] imageDepth=result.orig_img.shape[2]
) )
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail="model predict exception: " + str(e)) raise HTTPException(status_code=500, detail="exception in process_prediction_result(): " + str(e))
return PredictResponse( return PredictResponse(
image_id=image.image_id, image_id=image.image_id,
data=label_data.model_dump_json() data=label_data.model_dump_json()
) )
def get_random_color():
random_number = random.randint(0, 0xFFFFFF)
return f"#{random_number:06X}"
@router.post("/train") @router.post("/train")
async def classification_train(request: TrainRequest): async def classification_train(request: TrainRequest):
send_slack_message(f"cls train 요청{request}", status="success") send_slack_message(f"train 요청{request}", status="success")
# 데이터셋 루트 경로 얻기 # 데이터셋 루트 경로 얻기 (프로젝트 id 기반)
dataset_root_path = get_dataset_root_path(request.project_id) dataset_root_path = get_dataset_root_path(request.project_id)
# 모델 로드 # 모델 로드
model = get_model(request) model = get_model(request.project_id, request.m_key)
# 학습할 모델 카테고리, 카테고리가 추가되는 경우 추가 작업 필요 # 이 값을 학습할때 넣으면 이 카테고리들이 학습됨
model_categories = model.names names = list(request.label_map)
# 데이터 전처리 # 데이터 전처리: 학습할 디렉토리 & 데이터셋 설정 파일을 생성
preprocess_dataset(dataset_root_path, model_categories, request.data, request.ratio) process_directories_in_cls(dataset_root_path, names)
# 데이터 전처리: 데이터를 학습데이터와 테스트 데이터로 분류
train_data, test_data = split_data(request.data, request.ratio)
# 데이터 전처리: 데이터 이미지 및 레이블 다운로드
download_data(train_data, test_data, dataset_root_path)
# 학습 # 학습
results = run_train(request,model,dataset_root_path) results = run_train(request, model,dataset_root_path)
# best 모델 저장 # best 모델 저장
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt")) model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
response = {"model_key": model_key, "results": results.results_dict} result = results.results_dict
response = TrainResponse(
modelKey=model_key,
precision= 0,
recall= 0,
mAP50= 0,
mAP5095= 0,
accuracy=result["accuracy_top1"],
fitness= result["fitness"]
)
send_slack_message(f"train 성공{response}", status="success") send_slack_message(f"train 성공{response}", status="success")
return response return response
def download_data(train_data:list[TrainDataInfo], test_data:list[TrainDataInfo], dataset_root_path:str):
def preprocess_dataset(dataset_root_path, model_categories, data, ratio):
try: try:
# 디렉토리 생성 및 초기화
process_directories_in_cls(dataset_root_path, model_categories)
# 학습 데이터 분류
train_data, test_data = split_data(data, ratio)
if not train_data or not test_data:
raise HTTPException(status_code=400, detail="data split exception: data size is too small or \"ratio\" has invalid value")
# 학습 데이터 처리
for data in train_data: for data in train_data:
process_image_and_label_in_cls(data, dataset_root_path, "train") process_image_and_label_in_cls(data, dataset_root_path, "train")
# 검증 데이터 처리
for data in test_data: for data in test_data:
process_image_and_label_in_cls(data, dataset_root_path, "test") process_image_and_label_in_cls(data, dataset_root_path, "test")
except HTTPException as e:
raise e # HTTP 예외를 다시 발생
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail="preprocess dataset exception: " + str(e)) raise HTTPException(status_code=500, detail="exception in download_data(): " + str(e))
def run_train(request, model, dataset_root_path): def run_train(request, model, dataset_root_path):
try: try:
@ -164,6 +148,7 @@ def run_train(request, model, dataset_root_path):
data = ReportData( data = ReportData(
epoch=trainer.epoch, # 현재 에포크 epoch=trainer.epoch, # 현재 에포크
total_epochs=trainer.epochs, # 전체 에포크 total_epochs=trainer.epochs, # 전체 에포크
seg_loss=0, # seg loss
box_loss=0, # box loss box_loss=0, # box loss
cls_loss=loss["train/loss"], # cls loss cls_loss=loss["train/loss"], # cls loss
dfl_loss=0, # dfl loss dfl_loss=0, # dfl loss
@ -174,7 +159,7 @@ def run_train(request, model, dataset_root_path):
# 데이터 전송 # 데이터 전송
send_data_call_api(request.project_id, request.m_id, data) send_data_call_api(request.project_id, request.m_id, data)
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail=f"send_data exception: {e}") raise HTTPException(status_code=500, detail="exception in send_data: "+ str(e))
# 콜백 등록 # 콜백 등록
model.add_callback("on_train_epoch_start", send_data) model.add_callback("on_train_epoch_start", send_data)
@ -198,6 +183,6 @@ def run_train(request, model, dataset_root_path):
except HTTPException as e: except HTTPException as e:
raise e # HTTP 예외를 다시 발생 raise e # HTTP 예외를 다시 발생
except Exception as e: except Exception as e:
raise HTTPException(status_code=500, detail=f"run_train exception: {e}") raise HTTPException(status_code=500, detail="exception in run_train(): "+str(e))

View File

@ -144,6 +144,7 @@ async def detection_train(request: TrainRequest):
recall= result["metrics/recall(B)"], recall= result["metrics/recall(B)"],
mAP50= result["metrics/mAP50(B)"], mAP50= result["metrics/mAP50(B)"],
mAP5095= result["metrics/mAP50-95(B)"], mAP5095= result["metrics/mAP50-95(B)"],
accuracy=0,
fitness= result["fitness"] fitness= result["fitness"]
) )
send_slack_message(f"train 성공{response}", status="success") send_slack_message(f"train 성공{response}", status="success")

View File

@ -114,6 +114,7 @@ async def segmentation_train(request: TrainRequest):
recall= result["metrics/recall(M)"], recall= result["metrics/recall(M)"],
mAP50= result["metrics/mAP50(M)"], mAP50= result["metrics/mAP50(M)"],
mAP5095= result["metrics/mAP50-95(M)"], mAP5095= result["metrics/mAP50-95(M)"],
accuracy = 0,
fitness= result["fitness"] fitness= result["fitness"]
) )
send_slack_message(f"train 성공{response}", status="success") send_slack_message(f"train 성공{response}", status="success")

View File

@ -6,4 +6,5 @@ class TrainResponse(BaseModel):
recall: float recall: float
mAP50: float mAP50: float
mAP5095: float mAP5095: float
accuracy: float
fitness: float fitness: float

View File

@ -118,10 +118,10 @@ def get_file_name(path):
raise FileNotFoundError() raise FileNotFoundError()
return os.path.basename(path) return os.path.basename(path)
def process_directories_in_cls(dataset_root_path:str, model_categories:dict[int,str]): def process_directories_in_cls(dataset_root_path:str, model_categories:list[str]):
"""classification 학습을 위한 디렉토리 생성""" """classification 학습을 위한 디렉토리 생성"""
make_dir(dataset_root_path, init=False) make_dir(dataset_root_path, init=False)
for category in model_categories.values(): for category in model_categories:
make_dir(os.path.join(dataset_root_path, "train", category), init=True) make_dir(os.path.join(dataset_root_path, "train", category), init=True)
make_dir(os.path.join(dataset_root_path, "test", category), init=True) make_dir(os.path.join(dataset_root_path, "test", category), init=True)
if os.path.exists(os.path.join(dataset_root_path, "result")): if os.path.exists(os.path.join(dataset_root_path, "result")):
@ -140,4 +140,11 @@ def process_image_and_label_in_cls(data:TrainDataInfo, dataset_root_path:str, ch
label_path = os.path.join(dataset_root_path,child_path,label_name) label_path = os.path.join(dataset_root_path,child_path,label_name)
# url로부터 이미지 다운로드 # url로부터 이미지 다운로드
if os.path.exists(label_path):
urllib.request.urlretrieve(data.image_url, os.path.join(label_path, img_name)) urllib.request.urlretrieve(data.image_url, os.path.join(label_path, img_name))
else:
# raise FileNotFoundError("failed download")
print("Not Found Label Category. Failed Download")
# 레이블 데이터 중에서 프로젝트 카테고리에 해당되지않는 데이터가 있는 경우 처리 1. 에러 raise 2. 무시(+ warning)