Feat: Detection prediction 웹소켓 연결 실패시에도 실행되도록 구현
This commit is contained in:
parent
47288e6bab
commit
9ce4c986d2
@ -1,48 +1,46 @@
|
||||
import json
|
||||
|
||||
from fastapi import APIRouter, HTTPException
|
||||
from fastapi import APIRouter, HTTPException, Response
|
||||
from schemas.predict_request import PredictRequest
|
||||
from schemas.train_request import TrainRequest
|
||||
from schemas.predict_response import PredictResponse, LabelData
|
||||
from services.load_model import load_detection_model
|
||||
from utils.dataset_utils import split_data
|
||||
from utils.file_utils import get_dataset_root_path, process_directories, process_image_and_label, join_path
|
||||
from typing import List
|
||||
from utils.websocket_utils import WebSocketClient
|
||||
from utils.websocket_utils import WebSocketClient, WebSocketConnectionException
|
||||
import asyncio
|
||||
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@router.post("/predict", response_model=List[PredictResponse])
|
||||
@router.post("/predict")
|
||||
async def detection_predict(request: PredictRequest):
|
||||
version = "0.1.0"
|
||||
print("여기")
|
||||
|
||||
# Spring 서버의 WebSocket URL
|
||||
# TODO: 배포 시 변경
|
||||
spring_server_ws_url = f"ws://localhost:8080/ws"
|
||||
|
||||
print("여기")
|
||||
# WebSocketClient 인스턴스 생성
|
||||
ws_client = WebSocketClient(spring_server_ws_url)
|
||||
|
||||
# 모델 로드
|
||||
try:
|
||||
model = load_detection_model(request.path)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="load model exception: " + str(e))
|
||||
|
||||
# 웹소켓 연결
|
||||
try:
|
||||
await ws_client.connect()
|
||||
|
||||
# 모델 로드
|
||||
try:
|
||||
model = load_detection_model()
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="load model exception: " + str(e))
|
||||
if not ws_client.is_connected():
|
||||
raise WebSocketConnectionException()
|
||||
|
||||
# 추론
|
||||
results = []
|
||||
total_images = len(request.image_list)
|
||||
for idx, image in enumerate(request.image_list):
|
||||
try:
|
||||
# URL에서 이미지를 메모리로 로드 TODO: 추후 메모리에 할지 어떻게 해야할지 or 병렬 처리 고민
|
||||
|
||||
predict_results = model.predict(
|
||||
source=image.image_url,
|
||||
iou=request.iou_threshold,
|
||||
@ -87,22 +85,34 @@ async def detection_predict(request: PredictRequest):
|
||||
message = {
|
||||
"project_id": request.project_id,
|
||||
"progress": progress,
|
||||
"result": response_item.dict()
|
||||
"result": response_item.model_dump()
|
||||
}
|
||||
|
||||
await ws_client.send_message("/app/ai/predict/progress", json.dumps(message))
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
|
||||
|
||||
# 추론 결과 -> 레이블 객체 파싱
|
||||
return Response(status_code=204)
|
||||
|
||||
# 웹소켓 연결 안된 경우
|
||||
except WebSocketConnectionException as e:
|
||||
# 추론
|
||||
response = []
|
||||
try:
|
||||
for (image, result) in zip(request.image_list, results):
|
||||
label_data: LabelData = {
|
||||
"version": version,
|
||||
"task_type": "det",
|
||||
"shapes": [
|
||||
for image in request.image_list:
|
||||
try:
|
||||
predict_results = model.predict(
|
||||
source=image.image_url,
|
||||
iou=request.iou_threshold,
|
||||
conf=request.conf_threshold,
|
||||
classes=request.classes
|
||||
)
|
||||
|
||||
# 예측 결과 처리
|
||||
result = predict_results[0]
|
||||
label_data = LabelData(
|
||||
version=version,
|
||||
task_type="det",
|
||||
shapes=[
|
||||
{
|
||||
"label": summary['name'],
|
||||
"color": "#ff0000",
|
||||
@ -116,21 +126,24 @@ async def detection_predict(request: PredictRequest):
|
||||
}
|
||||
for summary in result.summary()
|
||||
],
|
||||
"split": "none",
|
||||
"imageHeight": result.orig_img.shape[0],
|
||||
"imageWidth": result.orig_img.shape[1],
|
||||
"imageDepth": result.orig_img.shape[2]
|
||||
}
|
||||
response.append({
|
||||
"image_id": image.image_id,
|
||||
"image_url": image.image_url,
|
||||
"data": label_data
|
||||
})
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="label parsing exception: " + str(e))
|
||||
split="none",
|
||||
imageHeight=result.orig_img.shape[0],
|
||||
imageWidth=result.orig_img.shape[1],
|
||||
imageDepth=result.orig_img.shape[2]
|
||||
)
|
||||
|
||||
response_item = PredictResponse(
|
||||
image_id=image.image_id,
|
||||
image_url=image.image_url,
|
||||
data=label_data
|
||||
)
|
||||
|
||||
response.append(response_item)
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="model predict exception: " + str(e))
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
print(f"Prediction process failed: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail="Prediction process failed")
|
||||
|
@ -1,14 +1,20 @@
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Optional
|
||||
|
||||
class ImageInfo(BaseModel):
|
||||
image_id: int
|
||||
image_url: str
|
||||
image_url: str
|
||||
|
||||
class LabelCategory(BaseModel):
|
||||
label_id: int
|
||||
label_name: str
|
||||
|
||||
class PredictRequest(BaseModel):
|
||||
project_id: int
|
||||
image_list: List[ImageInfo]
|
||||
version: Optional[str] = "latest"
|
||||
conf_threshold: Optional[float] = 0.25
|
||||
iou_threshold: Optional[float] = 0.45
|
||||
version: str = "latest"
|
||||
conf_threshold: float = 0.25
|
||||
iou_threshold: float = 0.45
|
||||
classes: Optional[List[int]] = None
|
||||
path: Optional[str] = Field(None, alias="model_path")
|
||||
label_categories: Optional[List[LabelCategory]] = None
|
||||
|
@ -1,12 +1,12 @@
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List, Optional, Union
|
||||
from schemas.predict_response import LabelData
|
||||
from schemas.predict_request import LabelCategory
|
||||
|
||||
class TrainDataInfo(BaseModel):
|
||||
image_url: str
|
||||
label: LabelData
|
||||
|
||||
|
||||
class TrainRequest(BaseModel):
|
||||
project_id: int
|
||||
data: List[TrainDataInfo]
|
||||
@ -14,3 +14,5 @@ class TrainRequest(BaseModel):
|
||||
ratio: float = 0.8 # 훈련/검증 분할 비율
|
||||
epochs: int = 50 # 훈련 반복 횟수
|
||||
batch: Union[float, int] = -1 # 훈련 batch 수[int] or GPU의 사용률 자동[float] default(-1): gpu의 60% 사용 유지
|
||||
path: Optional[str] = Field(None, alias="model_path")
|
||||
label_categories: Optional[List[LabelCategory]] = None # 새로운 레이블 카테고리 확인용
|
||||
|
@ -1,4 +1,5 @@
|
||||
import websockets
|
||||
from websockets import WebSocketException
|
||||
|
||||
class WebSocketClient:
|
||||
def __init__(self, url: str):
|
||||
@ -33,4 +34,8 @@ class WebSocketClient:
|
||||
print(f"Failed to close WebSocket connection: {str(e)}")
|
||||
|
||||
def is_connected(self):
|
||||
return self.websocket is not None and self.websocket.open
|
||||
return self.websocket is not None and self.websocket.open
|
||||
|
||||
class WebSocketConnectionException(WebSocketException):
|
||||
def __init__(self, message="Failed to connect to WebSocket"):
|
||||
super().__init__(message)
|
Loading…
Reference in New Issue
Block a user