Merge branch 'ai/feat/segmentation' into 'ai/develop'
Feat: 세그멘테이션 train response 수정 See merge request s11-s-project/S11P21S002!198
This commit is contained in:
commit
7bcb4da904
@ -3,6 +3,7 @@ from schemas.predict_request import PredictRequest
|
|||||||
from schemas.train_request import TrainRequest
|
from schemas.train_request import TrainRequest
|
||||||
from schemas.predict_response import PredictResponse, LabelData
|
from schemas.predict_response import PredictResponse, LabelData
|
||||||
from schemas.train_report_data import ReportData
|
from schemas.train_report_data import ReportData
|
||||||
|
from schemas.train_response import TrainResponse
|
||||||
from services.load_model import load_segmentation_model
|
from services.load_model import load_segmentation_model
|
||||||
from services.create_model import save_model
|
from services.create_model import save_model
|
||||||
from utils.dataset_utils import split_data
|
from utils.dataset_utils import split_data
|
||||||
@ -91,14 +92,11 @@ def get_random_color():
|
|||||||
|
|
||||||
|
|
||||||
@router.post("/train")
|
@router.post("/train")
|
||||||
async def segmentation_train(request: TrainRequest, http_request: Request):
|
async def segmentation_train(request: TrainRequest):
|
||||||
|
|
||||||
send_slack_message(f"train 요청{request}", status="success")
|
send_slack_message(f"train 요청{request}", status="success")
|
||||||
|
|
||||||
# Authorization 헤더에서 Bearer 토큰 추출
|
try:
|
||||||
auth_header = http_request.headers.get("Authorization")
|
|
||||||
token = auth_header.split(" ")[1] if auth_header and auth_header.startswith("Bearer ") else None
|
|
||||||
|
|
||||||
# 레이블 맵
|
# 레이블 맵
|
||||||
inverted_label_map = {value: key for key, value in request.label_map.items()} if request.label_map else None
|
inverted_label_map = {value: key for key, value in request.label_map.items()} if request.label_map else None
|
||||||
|
|
||||||
@ -115,17 +113,30 @@ async def segmentation_train(request: TrainRequest, http_request: Request):
|
|||||||
preprocess_dataset(dataset_root_path, model_categories, request.data, request.ratio, inverted_label_map)
|
preprocess_dataset(dataset_root_path, model_categories, request.data, request.ratio, inverted_label_map)
|
||||||
|
|
||||||
# 학습
|
# 학습
|
||||||
results = run_train(request,token,model,dataset_root_path)
|
results = run_train(request, model,dataset_root_path)
|
||||||
|
|
||||||
# best 모델 저장
|
# best 모델 저장
|
||||||
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
|
model_key = save_model(project_id=request.project_id, path=join_path(dataset_root_path, "result", "weights", "best.pt"))
|
||||||
|
|
||||||
response = {"model_key": model_key, "results": results.results_dict}
|
result = results.results_dict
|
||||||
|
|
||||||
|
response = TrainResponse(
|
||||||
|
modelKey=model_key,
|
||||||
|
precision= result["metrics/precision(M)"],
|
||||||
|
recall= result["metrics/recall(M)"],
|
||||||
|
mAP50= result["metrics/mAP50(M)"],
|
||||||
|
mAP5095= result["metrics/mAP50-95(M)"],
|
||||||
|
fitness= result["fitness"]
|
||||||
|
)
|
||||||
send_slack_message(f"train 성공{response}", status="success")
|
send_slack_message(f"train 성공{response}", status="success")
|
||||||
|
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
except HTTPException as e:
|
||||||
|
raise e
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
|
||||||
def preprocess_dataset(dataset_root_path, model_categories, data, ratio, label_map):
|
def preprocess_dataset(dataset_root_path, model_categories, data, ratio, label_map):
|
||||||
try:
|
try:
|
||||||
@ -150,7 +161,7 @@ def preprocess_dataset(dataset_root_path, model_categories, data, ratio, label_m
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise HTTPException(status_code=500, detail="preprocess dataset exception: " + str(e))
|
raise HTTPException(status_code=500, detail="preprocess dataset exception: " + str(e))
|
||||||
|
|
||||||
def run_train(request, token, model, dataset_root_path):
|
def run_train(request, model, dataset_root_path):
|
||||||
try:
|
try:
|
||||||
# 데이터 전송 콜백함수
|
# 데이터 전송 콜백함수
|
||||||
def send_data(trainer):
|
def send_data(trainer):
|
||||||
@ -168,7 +179,7 @@ def run_train(request, token, model, dataset_root_path):
|
|||||||
data = ReportData(
|
data = ReportData(
|
||||||
epoch=trainer.epoch, # 현재 에포크
|
epoch=trainer.epoch, # 현재 에포크
|
||||||
total_epochs=trainer.epochs, # 전체 에포크
|
total_epochs=trainer.epochs, # 전체 에포크
|
||||||
seg_loss=loss["train/seg_loss"], # seg loss
|
box_loss=loss["train/box_loss"], # box loss
|
||||||
cls_loss=loss["train/cls_loss"], # cls loss
|
cls_loss=loss["train/cls_loss"], # cls loss
|
||||||
dfl_loss=loss["train/dfl_loss"], # dfl loss
|
dfl_loss=loss["train/dfl_loss"], # dfl loss
|
||||||
fitness=trainer.fitness, # 적합도
|
fitness=trainer.fitness, # 적합도
|
||||||
@ -176,7 +187,7 @@ def run_train(request, token, model, dataset_root_path):
|
|||||||
left_seconds=left_seconds # 남은 시간(초)
|
left_seconds=left_seconds # 남은 시간(초)
|
||||||
)
|
)
|
||||||
# 데이터 전송
|
# 데이터 전송
|
||||||
send_data_call_api(request.project_id, request.m_id, data, token)
|
send_data_call_api(request.project_id, request.m_id, data)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise HTTPException(status_code=500, detail=f"send_data exception: {e}")
|
raise HTTPException(status_code=500, detail=f"send_data exception: {e}")
|
||||||
|
|
||||||
@ -184,7 +195,6 @@ def run_train(request, token, model, dataset_root_path):
|
|||||||
model.add_callback("on_train_epoch_start", send_data)
|
model.add_callback("on_train_epoch_start", send_data)
|
||||||
|
|
||||||
# 학습 실행
|
# 학습 실행
|
||||||
try:
|
|
||||||
results = model.train(
|
results = model.train(
|
||||||
data=join_path(dataset_root_path, "dataset.yaml"),
|
data=join_path(dataset_root_path, "dataset.yaml"),
|
||||||
name=join_path(dataset_root_path, "result"),
|
name=join_path(dataset_root_path, "result"),
|
||||||
@ -194,13 +204,10 @@ def run_train(request, token, model, dataset_root_path):
|
|||||||
lrf=request.lrf,
|
lrf=request.lrf,
|
||||||
optimizer=request.optimizer
|
optimizer=request.optimizer
|
||||||
)
|
)
|
||||||
except Exception as e:
|
|
||||||
raise HTTPException(status_code=500, detail=f"model train exception: {e}")
|
|
||||||
|
|
||||||
# 마지막 에포크 전송
|
# 마지막 에포크 전송
|
||||||
model.trainer.epoch += 1
|
model.trainer.epoch += 1
|
||||||
send_data(model.trainer)
|
send_data(model.trainer)
|
||||||
|
|
||||||
return results
|
return results
|
||||||
|
|
||||||
except HTTPException as e:
|
except HTTPException as e:
|
||||||
@ -211,3 +218,6 @@ def run_train(request, token, model, dataset_root_path):
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user