Feat: Detection 모델 학습 API 구현 - S11P21S002-117

This commit is contained in:
김진현 2024-09-09 17:46:15 +09:00
parent 144d837361
commit 75a12dd10c
5 changed files with 41 additions and 17 deletions

5
ai/.gitignore vendored
View File

@ -33,3 +33,8 @@ dist/
# 테스트 파일 # 테스트 파일
test-data/ test-data/
# 리소스
resources/
datasets/
*.pt

View File

@ -4,9 +4,9 @@ from schemas.train_request import TrainRequest
from schemas.predict_response import PredictResponse, LabelData from schemas.predict_response import PredictResponse, LabelData
from services.ai_service import load_detection_model from services.ai_service import load_detection_model
from utils.dataset_utils import split_data from utils.dataset_utils import split_data
from utils.file_utils import get_dataset_root_path, process_directories, process_image_and_label from utils.file_utils import get_dataset_root_path, process_directories, process_image_and_label, join_path
from typing import List from typing import List
from PIL import Image from fastapi.responses import FileResponse
router = APIRouter() router = APIRouter()
@router.post("/detection", response_model=List[PredictResponse]) @router.post("/detection", response_model=List[PredictResponse])
@ -97,3 +97,14 @@ def train(request: TrainRequest):
# 검증 데이터 처리 # 검증 데이터 처리
for data in val_data: for data in val_data:
process_image_and_label(data, dataset_root_path, "val") process_image_and_label(data, dataset_root_path, "val")
model = load_detection_model("test-data/model/best.pt")
model.train(
data=join_path(dataset_root_path,"dataset.yaml"),
name=join_path(dataset_root_path,"result"),
epochs= request.epochs,
batch=request.batch,
)
return FileResponse(path=join_path(dataset_root_path, "result", "weights", "best.pt"), filename="best.pt", media_type="application/octet-stream")

View File

@ -1,5 +1,5 @@
from pydantic import BaseModel from pydantic import BaseModel
from typing import List, Optional from typing import List, Optional, Union
from schemas.predict_response import LabelData from schemas.predict_response import LabelData
class TrainDataInfo(BaseModel): class TrainDataInfo(BaseModel):
@ -11,4 +11,6 @@ class TrainRequest(BaseModel):
project_id: int project_id: int
data: List[TrainDataInfo] data: List[TrainDataInfo]
seed: Optional[int] = None # 랜덤 변수 시드 seed: Optional[int] = None # 랜덤 변수 시드
ratio: Optional[float] = 0.8 # 훈련/검증 분할 비율 ratio: float = 0.8 # 훈련/검증 분할 비율
epochs: int = 50 # 훈련 반복 횟수
batch: Union[float, int] = -1 # 훈련 batch 수[int] or GPU의 사용률 자동[float] default(-1): gpu의 60% 사용 유지

View File

@ -6,7 +6,7 @@ from ultralytics.nn.tasks import DetectionModel, SegmentationModel
import os import os
import torch import torch
def load_detection_model(model_path: str = "test-data/model/yolov8n.pt", device:str ="auto"): def load_detection_model(model_path: str = os.path.join("test-data","model","initial.pt"), device:str ="auto"):
""" """
지정된 경로에서 YOLO 모델을 로드합니다. 지정된 경로에서 YOLO 모델을 로드합니다.

View File

@ -5,8 +5,8 @@ from PIL import Image
from schemas.train_request import TrainDataInfo from schemas.train_request import TrainDataInfo
def get_dataset_root_path(project_id): def get_dataset_root_path(project_id):
"""프로젝트 ID를 기반으로 데이터셋 루트 경로 반환""" """데이터셋 루트 절대 경로 반환"""
return os.path.join('test-data', 'projects', str(project_id), 'train_model') return os.path.join(os.getcwd(), 'datasets', 'train')
def make_dir(path:str, init: bool): def make_dir(path:str, init: bool):
""" """
@ -19,8 +19,8 @@ def make_dir(path:str, init: bool):
def make_yml(path:str): def make_yml(path:str):
data = { data = {
"train": "train", "train": f"{path}/train",
"val": "val", "val": f"{path}/val",
"nc": 80, "nc": 80,
"names": "names":
{ {
@ -106,7 +106,7 @@ def make_yml(path:str):
79: "toothbrush" 79: "toothbrush"
} }
} }
with open(path, 'w') as f: with open(os.path.join(path, "dataset.yaml"), 'w') as f:
yaml.dump(data, f) yaml.dump(data, f)
def process_directories(dataset_root_path:str): def process_directories(dataset_root_path:str):
@ -114,7 +114,9 @@ def process_directories(dataset_root_path:str):
make_dir(dataset_root_path, init=False) make_dir(dataset_root_path, init=False)
make_dir(os.path.join(dataset_root_path, "train"), init=True) make_dir(os.path.join(dataset_root_path, "train"), init=True)
make_dir(os.path.join(dataset_root_path, "val"), init=True) make_dir(os.path.join(dataset_root_path, "val"), init=True)
make_yml(os.path.join(dataset_root_path, "dataset.yaml")) if os.path.exists(os.path.join(dataset_root_path, "result")):
shutil.rmtree(os.path.join(dataset_root_path, "result"))
make_yml(dataset_root_path)
def process_image_and_label(data:TrainDataInfo, dataset_root_path:str, child_path:str): def process_image_and_label(data:TrainDataInfo, dataset_root_path:str, child_path:str):
@ -138,8 +140,12 @@ def process_image_and_label(data:TrainDataInfo, dataset_root_path:str, child_pat
x2 = shape.points[1][0] x2 = shape.points[1][0]
y2 = shape.points[1][1] y2 = shape.points[1][1]
train_label.append(str(shape.group_id)) # label Id train_label.append(str(shape.group_id)) # label Id
train_label.append(str((x1 + x2) / 2)) # 중심 x 좌표 train_label.append(str((x1 + x2) / 2 / label.imageWidth)) # 중심 x 좌표
train_label.append(str((y1 + y2) / 2)) # 중심 y 좌표 train_label.append(str((y1 + y2) / 2 / label.imageHeight)) # 중심 y 좌표
train_label.append(str(x2 - x1)) # 너비 train_label.append(str((x2 - x1) / label.imageWidth)) # 너비
train_label.append(str(y2 - y1)) # 높이 train_label.append(str((y2 - y1) / label.imageHeight )) # 높이
train_label_txt.write(" ".join(train_label)+"\n") train_label_txt.write(" ".join(train_label)+"\n")
def join_path(path, *paths):
"""os.path.join()과 같은 기능, os import 하기 싫어서 만듦"""
return os.path.join(path, *paths)