Merge branch 'ai/feat/segmentation' into 'ai/develop'
Fix: Detection, Segmentation 학습 레이블 컨버터 추가 See merge request s11-s-project/S11P21S002!216
This commit is contained in:
commit
15cc363e5c
@ -116,6 +116,11 @@ async def detection_train(request: TrainRequest):
|
||||
# 이 값을 학습할때 넣으면 이 카테고리들이 학습됨
|
||||
names = list(request.label_map)
|
||||
|
||||
# 레이블 변환기 (file_util.py/create_detection_train_label() 에 쓰임)
|
||||
label_converter = {request.label_map[key]:idx for idx, key in enumerate(request.label_map)}
|
||||
# key : 데이터에 저장된 프로젝트 카테고리 id
|
||||
# value : 모델에 저장될 카테고리 id (모델에는 key의 idx 순서대로 저장될 것임)
|
||||
|
||||
# 데이터 전처리: 학습할 디렉토리 & 데이터셋 설정 파일을 생성
|
||||
process_directories(dataset_root_path, names)
|
||||
|
||||
@ -123,7 +128,7 @@ async def detection_train(request: TrainRequest):
|
||||
train_data, val_data = split_data(request.data, request.ratio)
|
||||
|
||||
# 데이터 전처리: 데이터 이미지 및 레이블 다운로드
|
||||
download_data(train_data, val_data, dataset_root_path)
|
||||
download_data(train_data, val_data, dataset_root_path, label_converter)
|
||||
|
||||
# 학습
|
||||
results = run_train(request, model,dataset_root_path)
|
||||
@ -155,13 +160,13 @@ def split_data(data:list[TrainDataInfo], ratio:float):
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="exception in split_data(): " + str(e))
|
||||
|
||||
def download_data(train_data:list[TrainDataInfo], val_data:list[TrainDataInfo], dataset_root_path:str):
|
||||
def download_data(train_data:list[TrainDataInfo], val_data:list[TrainDataInfo], dataset_root_path:str, label_converter:dict[int, int]):
|
||||
try:
|
||||
for data in train_data:
|
||||
process_image_and_label(data, dataset_root_path, "train")
|
||||
process_image_and_label(data, dataset_root_path, "train", label_converter)
|
||||
|
||||
for data in val_data:
|
||||
process_image_and_label(data, dataset_root_path, "val")
|
||||
process_image_and_label(data, dataset_root_path, "val", label_converter)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="exception in download_data(): " + str(e))
|
||||
|
||||
|
@ -7,10 +7,9 @@ from schemas.train_report_data import ReportData
|
||||
from schemas.train_response import TrainResponse
|
||||
from services.load_model import load_segmentation_model
|
||||
from services.create_model import save_model
|
||||
from utils.file_utils import get_dataset_root_path, process_directories, process_image_and_label, join_path
|
||||
from utils.file_utils import get_dataset_root_path, process_directories, join_path
|
||||
from utils.slackMessage import send_slack_message
|
||||
from utils.api_utils import send_data_call_api
|
||||
import random
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@ -87,6 +86,11 @@ async def segmentation_train(request: TrainRequest):
|
||||
# 이 값을 학습할때 넣으면 이 카테고리들이 학습됨
|
||||
names = list(request.label_map)
|
||||
|
||||
# 레이블 변환기 (file_util.py/create_segmentation_train_label() 에 쓰임)
|
||||
label_converter = {request.label_map[key]:idx for idx, key in enumerate(request.label_map)}
|
||||
# key : 데이터에 저장된 프로젝트 카테고리 id
|
||||
# value : 모델에 저장될 카테고리 id (모델에는 key의 idx 순서대로 저장될 것임)
|
||||
|
||||
# 데이터 전처리: 학습할 디렉토리 & 데이터셋 설정 파일을 생성
|
||||
process_directories(dataset_root_path, names)
|
||||
|
||||
@ -94,7 +98,7 @@ async def segmentation_train(request: TrainRequest):
|
||||
train_data, val_data = split_data(request.data, request.ratio)
|
||||
|
||||
# 데이터 전처리: 데이터 이미지 및 레이블 다운로드
|
||||
download_data(train_data, val_data, dataset_root_path)
|
||||
download_data(train_data, val_data, dataset_root_path, label_converter)
|
||||
|
||||
# 학습
|
||||
results = run_train(request, model,dataset_root_path)
|
||||
|
@ -39,7 +39,7 @@ def process_directories(dataset_root_path:str, model_categories:list[str]):
|
||||
shutil.rmtree(os.path.join(dataset_root_path, "result"))
|
||||
make_yml(dataset_root_path, model_categories)
|
||||
|
||||
def process_image_and_label(data:TrainDataInfo, dataset_root_path:str, child_path:str):
|
||||
def process_image_and_label(data:TrainDataInfo, dataset_root_path:str, child_path:str, label_converter:dict[int,int]):
|
||||
"""이미지 저장 및 레이블 파일 생성"""
|
||||
# 이미지 url로부터 파일명 분리
|
||||
img_name = data.image_url.split('/')[-1]
|
||||
@ -60,11 +60,11 @@ def process_image_and_label(data:TrainDataInfo, dataset_root_path:str, child_pat
|
||||
|
||||
# 레이블 -> 학습용 레이블 데이터 파싱 후 생성
|
||||
if label['task_type'] == "det":
|
||||
create_detection_train_label(label, label_path)
|
||||
create_detection_train_label(label, label_path, label_converter)
|
||||
elif label["task_type"] == "seg":
|
||||
create_segmentation_train_label(label, label_path)
|
||||
create_segmentation_train_label(label, label_path, label_converter)
|
||||
|
||||
def create_detection_train_label(label:dict, label_path:str):
|
||||
def create_detection_train_label(label:dict, label_path:str, label_converter:dict[int, int]):
|
||||
with open(label_path, "w") as train_label_txt:
|
||||
for shape in label["shapes"]:
|
||||
train_label = []
|
||||
@ -72,18 +72,18 @@ def create_detection_train_label(label:dict, label_path:str):
|
||||
y1 = shape["points"][0][1]
|
||||
x2 = shape["points"][1][0]
|
||||
y2 = shape["points"][1][1]
|
||||
train_label.append(str(shape["group_id"])) # label Id
|
||||
train_label.append(str(label_converter[shape["group_id"]])) # label Id
|
||||
train_label.append(str((x1 + x2) / 2 / label["imageWidth"])) # 중심 x 좌표
|
||||
train_label.append(str((y1 + y2) / 2 / label["imageHeight"])) # 중심 y 좌표
|
||||
train_label.append(str((x2 - x1) / label["imageWidth"])) # 너비
|
||||
train_label.append(str((y2 - y1) / label["imageHeight"] )) # 높이
|
||||
train_label_txt.write(" ".join(train_label)+"\n")
|
||||
|
||||
def create_segmentation_train_label(label:dict, label_path:str):
|
||||
def create_segmentation_train_label(label:dict, label_path:str, label_converter:dict[int, int]):
|
||||
with open(label_path, "w") as train_label_txt:
|
||||
for shape in label["shapes"]:
|
||||
train_label = []
|
||||
train_label.append(str(shape["group_id"])) # label Id
|
||||
train_label.append(str(label_converter[shape["group_id"]])) # label Id
|
||||
for x, y in shape["points"]:
|
||||
train_label.append(str(x / label["imageWidth"]))
|
||||
train_label.append(str(y / label["imageHeight"]))
|
||||
@ -141,6 +141,3 @@ def process_image_and_label_in_cls(data:TrainDataInfo, dataset_root_path:str, ch
|
||||
|
||||
# url로부터 이미지 다운로드
|
||||
urllib.request.urlretrieve(data.image_url, os.path.join(label_path, img_name))
|
||||
|
||||
def download_image(url, path):
|
||||
urllib.request.urlretrieve(url, path)
|
Loading…
Reference in New Issue
Block a user